Inteliigent Load-Frequency Control of Power System in the Precence of Wing Uncertainty Based on Latin Hyper Square and Particle Swarm Optimization Algorithms

Document Type : Original Article

Author

Electrical Engineering Department, Velayat University, Iranshahr, Iran

Abstract

This paper presents a method of load-frequency control in power systems in the presence of wind turbines in the presence of wind uncertainty. To do this, using power system modelled on power factory@ software and considering classic stabilizers, the speed of the wind turbines is controlled.  In the case of increasing the system damping performance, using intelligent particle swarm optimization algorithm, stabilizer parameters are optimized. Also, in order to evaluate wind units stability through different natural situations, considering the wind and load uncertainties evaluated through LHS sampling algorithm, the wind turbines frequency control are investigated. Results indicate the proper performance of the controller in the presence of wind and load uncertainties.

Highlights

[1] Ranjbar, S., Aghamohammadi, M. R., Haghjoo, F., "A new scheme of WADC for damping inter-area oscillation based on cart technique and thevenine impedance", International Journal of Electrical Power and Energy Systems, Vol. 94, No.2, pp. 339-353, https://doi.org/10.1016/j.ijepes.2017.07.010.

[2] Qi, J., Wu, Q., Zhang Y., Weng G., Zhou D., "Unified residue method for design of compact wide-area damping controller based on power system stabilizer", Journal of Modern Power Systems and Clean Energy, Vol. 8, No. 2, pp. 367-376, https://doi.org/10.35833/MPCE.2018.000370

[3] Mou, Q., Ye, H., Liu, Y., "Nonsmooth optimization-based wadc tuning in large delayed cyber-physical power system by interarea mode tracking and gradient sampling", IEEE Transactions on Power Systems, Vol. 34, No. 1, pp. 668-679, https://doi.org/10.1109/TPWRS.2018.2867739.

[4] Ranjbar, S., "STATCOM-based intelligent wide-area controller for damping interarea oscillation", IEEE Systems Journal, Vol. 17, No.03, https://doi.org/10.1109/JSYST.2023.3263889.

[5] Bento, M., "Fixed wide-area damping controller considering time delays and power system operation uncertainties," IEEE Transactions on Power Systems, Vol. 35, No. 5, pp.3918-3926, https://doi.org/10.1109/TPWRS.2020.2978426.

[6] Zhou, Y., Liu, L., Li, Y., Gan, C., Li, H., Liu, Y., "A gain scheduling wide-area damping controller for the efficient integration of photovoltaic plant", IEEE Transactions on Power Systems, Vol. 34, No. 3, pp. 1703-1715, https://doi.org/10.1109/TPWRS.2018.2879987.

[7] Shen, Y., Yao, W., Wen, J., Jiang, L., "Resilient wide-area damping control using grhdp to tolerate communication failures", IEEE Transactions on Smart Grid, Vol. 10, No. 3, pp. 2547-2557, https://doi.org/10.1109/TSG.2018.2803822.

[8] Naguru, N., Sarkar, R., "Practical supplementary controller design for the bi-layer WAC architecture through structurally constrained H2 norm optimization", IET Generation, Transmission & Distribution, Vol. 13, No. 7, pp. 1095-1103, https://doi.org/10.1049/iet-gtd.2018.5442.

[9] Ranjbar, S., "Adaptive criteria of estimating power system separation times based on inter-area signal", IET Generation, Transmission & Distribution, Vol.17, No.3, pp.573-588, https://doi.org/10.1049/gtd2.12750.

[10] Shi, X., Cao, Y., Shahidehpour M., Li, Y., Wu, X., Li, Z., "Data-Driven wide-area model-free adaptive damping control with communication delays for wind farm", IEEE Transactions on Smart Grid, Vol. 11, No. 6, pp. 5062-5071, https://doi.org/ 10.1109/TSG.2020.3001640.

[11] Surinkaew, T., Shah, R., Nadarajah, M., Muyeen, S.M., "Forced oscillation damping controller for an interconnected power system", IET Generation, Transmission & Distribution, Vol. 14, No. 2, pp. 339-347, https://doi.org/ 10.1049/iet-gtd.2019.1115.

[12] Naguru, N., Ganapavarapu Y., "Design of a limited state feedback wide-area power system damping controller without communication channels", IEEE Access, Vol. 8, pp.160931-160946, 2020. https://doi.org/ 10.1109/access.2020.3021599.

[13] Baltas, G.N., Lai, N.B., Marin L., Tarrasó A., Rodriguez P., "Grid-forming power converters tuned through artificial intelligence to damp subsynchronous interactions in electrical grids", IEEE Access, vol. 8, pp. 93369-93379, https://doi.org/ 10.1109/access.2020.2995298

[14] Ranjbar, S., "Online estimation of controlled islanding time intervals using dynamic state trajectories through cascading failures from WAMS data", Electric Power Systems Research, Vol. 214, Part A, pp. 584-596, https://doi.org/ 10.1016/j.epsr.2022.108890.

[15] Ranjbar, S., Al-Sumaiti A., Sangrody R., Byon Y., Marzband M., "Dynamic clustering-based model reduction scheme for damping control of large power systems using series compensators from wide area signals", International Journal of Electrical Power & Energy Systems, Vol. 131, https://doi.org/ 10.1016/j.ijepes.2021.107082.

[16] Wang, W., Jiang, L., Cao, Y., Li, Y., "A parameter alternating VSG controller of VSC-MTDC systems for low frequency oscillation damping", IEEE Transactions on Power Systems, Vol. 35, No. 6, pp. 4609-4621, https://doi.org/ 10.1109/tpwrs.2020.2997859.

[17] Ghosh, S., Isbeih, Y. J., El Moursi, M. S., El-Saadany E. F., "Cross-Gramian model reduction approach for tuning power system stabilizers in large power networks", IEEE Transactions on Power Systems, Vol. 35, No. 3, pp. 1911-1922, https://doi.org/ 10.1109/TPWRS.2019.2924495.

[18] Ranjbar, S., "Wide area voltage sag control in transmission lines using modified UPFC", Electr Eng, Vol. 19, No. 2, pp. 2675–2685, https://doi.org/ 10.1007/s00202-023-01846-y.

[19] De Almeida, R.G., Peças Lopes, J.A., "Participation of doubly fed induction wind generators in system frequency regulation", IEEE Trans. on Power Systems, Vol. 22, No. 3, pp. 278-301, https://doi.org/ 10.1109/TPWRS.2007.901096.

[20] Mauricio, J.M., Marano, A., Expósito, A.G., Martínez, J.L., "Frequency regulation contribution through variable-speed wind energy conversion systems", IEEE Trans. on Power Systems., Vol. 24, No. 1, pp. 125-139, https://doi.org/ 10.1109/TPWRS.2008.2009398.

 

 

Keywords

Main Subjects


[1] Ranjbar, S., Aghamohammadi, M. R., Haghjoo, F., "A new scheme of WADC for damping inter-area oscillation based on cart technique and thevenine impedance", International Journal of Electrical Power and Energy Systems, Vol. 94, No.2, pp. 339-353, https://doi.org/10.1016/j.ijepes.2017.07.010.
[2] Qi, J., Wu, Q., Zhang Y., Weng G., Zhou D., "Unified residue method for design of compact wide-area damping controller based on power system stabilizer", Journal of Modern Power Systems and Clean Energy, Vol. 8, No. 2, pp. 367-376, https://doi.org/10.35833/MPCE.2018.000370
[3] Mou, Q., Ye, H., Liu, Y., "Nonsmooth optimization-based wadc tuning in large delayed cyber-physical power system by interarea mode tracking and gradient sampling", IEEE Transactions on Power Systems, Vol. 34, No. 1, pp. 668-679, https://doi.org/10.1109/TPWRS.2018.2867739.
[4] Ranjbar, S., "STATCOM-based intelligent wide-area controller for damping interarea oscillation", IEEE Systems Journal, Vol. 17, No.03, https://doi.org/10.1109/JSYST.2023.3263889.
[5] Bento, M., "Fixed wide-area damping controller considering time delays and power system operation uncertainties," IEEE Transactions on Power Systems, Vol. 35, No. 5, pp.3918-3926, https://doi.org/10.1109/TPWRS.2020.2978426.
[6] Zhou, Y., Liu, L., Li, Y., Gan, C., Li, H., Liu, Y., "A gain scheduling wide-area damping controller for the efficient integration of photovoltaic plant", IEEE Transactions on Power Systems, Vol. 34, No. 3, pp. 1703-1715, https://doi.org/10.1109/TPWRS.2018.2879987.
[7] Shen, Y., Yao, W., Wen, J., Jiang, L., "Resilient wide-area damping control using grhdp to tolerate communication failures", IEEE Transactions on Smart Grid, Vol. 10, No. 3, pp. 2547-2557, https://doi.org/10.1109/TSG.2018.2803822.
[8] Naguru, N., Sarkar, R., "Practical supplementary controller design for the bi-layer WAC architecture through structurally constrained H2 norm optimization", IET Generation, Transmission & Distribution, Vol. 13, No. 7, pp. 1095-1103, https://doi.org/10.1049/iet-gtd.2018.5442.
[9] Ranjbar, S., "Adaptive criteria of estimating power system separation times based on inter-area signal", IET Generation, Transmission & Distribution, Vol.17, No.3, pp.573-588, https://doi.org/10.1049/gtd2.12750.
[10] Shi, X., Cao, Y., Shahidehpour M., Li, Y., Wu, X., Li, Z., "Data-Driven wide-area model-free adaptive damping control with communication delays for wind farm", IEEE Transactions on Smart Grid, Vol. 11, No. 6, pp. 5062-5071, https://doi.org/ 10.1109/TSG.2020.3001640.
[11] Surinkaew, T., Shah, R., Nadarajah, M., Muyeen, S.M., "Forced oscillation damping controller for an interconnected power system", IET Generation, Transmission & Distribution, Vol. 14, No. 2, pp. 339-347, https://doi.org/ 10.1049/iet-gtd.2019.1115.
[12] Naguru, N., Ganapavarapu Y., "Design of a limited state feedback wide-area power system damping controller without communication channels", IEEE Access, Vol. 8, pp.160931-160946, 2020. https://doi.org/ 10.1109/access.2020.3021599.
[13] Baltas, G.N., Lai, N.B., Marin L., Tarrasó A., Rodriguez P., "Grid-forming power converters tuned through artificial intelligence to damp subsynchronous interactions in electrical grids", IEEE Access, vol. 8, pp. 93369-93379, https://doi.org/ 10.1109/access.2020.2995298
[14] Ranjbar, S., "Online estimation of controlled islanding time intervals using dynamic state trajectories through cascading failures from WAMS data", Electric Power Systems Research, Vol. 214, Part A, pp. 584-596, https://doi.org/ 10.1016/j.epsr.2022.108890.
[15] Ranjbar, S., Al-Sumaiti A., Sangrody R., Byon Y., Marzband M., "Dynamic clustering-based model reduction scheme for damping control of large power systems using series compensators from wide area signals", International Journal of Electrical Power & Energy Systems, Vol. 131, https://doi.org/ 10.1016/j.ijepes.2021.107082.
[16] Wang, W., Jiang, L., Cao, Y., Li, Y., "A parameter alternating VSG controller of VSC-MTDC systems for low frequency oscillation damping", IEEE Transactions on Power Systems, Vol. 35, No. 6, pp. 4609-4621, https://doi.org/ 10.1109/tpwrs.2020.2997859.
[17] Ghosh, S., Isbeih, Y. J., El Moursi, M. S., El-Saadany E. F., "Cross-Gramian model reduction approach for tuning power system stabilizers in large power networks", IEEE Transactions on Power Systems, Vol. 35, No. 3, pp. 1911-1922, https://doi.org/ 10.1109/TPWRS.2019.2924495.
[18] Ranjbar, S., "Wide area voltage sag control in transmission lines using modified UPFC", Electr Eng, Vol. 19, No. 2, pp. 2675–2685, https://doi.org/ 10.1007/s00202-023-01846-y.
[19] De Almeida, R.G., Peças Lopes, J.A., "Participation of doubly fed induction wind generators in system frequency regulation", IEEE Trans. on Power Systems, Vol. 22, No. 3, pp. 278-301, https://doi.org/ 10.1109/TPWRS.2007.901096.
[20] Mauricio, J.M., Marano, A., Expósito, A.G., Martínez, J.L., "Frequency regulation contribution through variable-speed wind energy conversion systems", IEEE Trans. on Power Systems., Vol. 24, No. 1, pp. 125-139, https://doi.org/ 10.1109/TPWRS.2008.2009398.