The Role of Width Modulation in Increasing the Efficiency of Thermoelectric Generators

Document Type : Original Article

Authors

Department of Electrical and Computer Engineering, University of Kashan, Kashan, Iran

Abstract

In this paper, the thermoelectric properties of graphene-based structures are assessed by tight-binding method using Landauer-Buttiker formulas. Although a decline in the width of the grapheme nanoribbon can increase the thermoelectric figure of merit, the proper design of the nanostructures is still possible. Based on the results, a periodic alteration in the width of the ribbon, also known as the ribbon width modulation, could enhance the figure of merit twice compared with that of the narrow ribbon. Moreover, for the case with gradual changes in the ribbon width, three-fold enhancement could be achieved in the thermoelectric figure of merit compared to that of narrow ribbons. Such an increment could be assigned to an increase in the bandgap and, thus, the increment in the Seebeck coefficient, the power factor as well as the thermal conductance reduction.

Keywords

Main Subjects


[1] Garcia-Martinez, J., Nanotechnology for the Energy Challenge, 2nd Edition, Wiley Publishing, 2013.
[2] Nolas, G., Sharp, J., Goldsmid, H., Thermoelectrics: Basic Principles New Materials Developments, Springer, 2001.
[3] Harman, T., Taylor, P., Walsh, M., LaForge, B., "Quantum dot superlattice thermoelectric materials devices", Science, Vol. 297, pp. 2229-2232, 2002. https://doi.org/10.1126/science.1072886
[4] Snyder, G. J., "Small thermoelectric generators", the electrochemical society interface, Vol. 17, pp. 54-58, 2008. https://doi.org/10.1149/2.F06083IF
[5] Snyder, G. J., Toberer, E. S., "Complex thermoelectric materials", Nature Materials, Vol. 7, pp. 105-114, 2008. https://doi.org/10.1038/nmat2090
[6] Goldsmid, H. J., Introduction to Thermoelectricity, 2nd Edition, Springer, 2009.
[7] Dresselhause, M., et al., "New directions for low dimensional thermoelectric materials", Advanced Materials, Vol. 19, pp. 1043-1053, 2007. https://doi.org/10.1002/adma.200600527
[8] Keskar, G., Lyyamperumal, E., Hitchcock, D. A., Rao, A. M., "Significant improvement of thermoelectric performance in nanostructured bismuth networks", Nano Energy, Vol. 1, pp. 706-713, 2012. https://doi.org/10.1016/j.nanoen.2012.06.005
[9] Hicks, L. D., Harman, T. C., Sun, X., Dresselhaus, M. S., "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merrit", Physical Review B, Vol. 53, pp. 10493-10496, 1996. https://doi.org/10.1103/PhysRevB.53.R10493
[10] Zuev, Y. M., Lee, J. S., Galloy, C., Park, H., Kim, P., "Diameter dependence of the transport properties of antimony telluride nanowires", Nano Letters, Vol. 10, pp. 3037-3040, 2010. https://doi.org/10.1021/nl101505q
[11] Venkatasubramanian, R., Colpitts, T., "enhancement in figure of merit with superlattice structures for thin-film thermoelectric devices", Materials Research Society, Vol. 478, pp. 73-84, 1997. https://doi.org/10.1557/PROC-478-73
[12] Chen, G., "Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures", Journal Heat Transfer, Vol. 119, pp. 220-229, 1997. https://doi.org/10.1115/1.2824212
[13] Beyer, H., et al., "PbTe based superlattice structures with high thermoelectric efficiency", Applied Physics Letter, Vol. 80, pp. 1216-1218, 2002. https://doi.org/10.1063/1.1448388
[14] Donadio, D., Galli, G., "Atomistic simulations of heat transport in silicon nanowires", Physical Review Letter, Vol. 102, p. 195901, 2009. https://doi.org/10.1103/PhysRevLett.102.195901
[15] Zhou, W. X., Shihua, T., Chen, K. Q. Wenping, H., "Enhancement of thermoelectric performance in inas nanotubes by tuning quantum confinement effect", Journal of Applied Physics, Vol. 115, p. 124308, 2014. https://doi.org/10.1063/1.4869745
[16] Sevincli, H., Cuniberti, G., "Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons", Physical Review B, Vol. 81, p. 113401, 2010. https://doi.org/10.1103/PhysRevB.81.113401
[17] Novoselov, K. S., Geim, A. K., "Electric field effect in atomically thin carbon film", Science, Vol. 306, pp. 666-669, 2004. https://doi.org/10.1126/science.1102896
[18] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K., "The electronic properties of graphene", Reviews of Modern Physics, Vol. 81, pp. 109-162, 2009. https://doi.org/10.1103/RevModPhys.81.109
[19] Pop, E., Varshney, V., Roy, A. K., Thermal properties of graphene: fundamentals and applications, Cambridge University Press, 2012.
[20] Andrew, R. C., Mapasha, R. E., Ukpong, A. M., Chetty, N., "Mechanical properties of graphene and boronitrene", Physical Review B, Vol. 85, p. 125428, 2012. https://doi.org/10.1103/PhysRevB.85.125428
[21] Ouyang, Y., Guo, J., "A theoretical study on thermoelectric performance of graphene nanoribbons", Appl. Phys. Lett., Vol. 94, p. 263107, 2009. https://doi.org/10.1063/1.3171933
[22] Ni, X., Liang, G., Wang, J. S., Li, B., "Disorder enhances thermoelectric figure of merit in armchair graphene nanoribbons", Appl. Phys. Lett., Vol. 95, p. 192114, 2009. https://doi.org/10.1063/1.3264087
[23] Sevincli, H., Cunibetti, G., "Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons", Physical Review B, Vol. 81, p. 113401, 2010. https://doi.org/10.1103/PhysRevB.81.113401
[24] Zianni, X., "Diameter-Modulated nanowires as candidates for high thermoelectric energy conversion efficiency", Appl. Phys. Lett., Vol. 97, p. 233106, 2010. https://doi.org/10.1063/1.3523360
[25] Mazzamuto, F., et al., "Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons", Physical Review B, Vol. 83, p. 235426, 2011. https://doi.org/10.1103/PhysRevB.83.235426
[26] Datta, S., Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.
[27] Jiang, J. W., Wang, J. S., Li, B., "A nonequilibrium Green’s function study of thermoelectric properties in single-walled carbon nanotubes", Journal of Applied Physics, Vol. 109, pp. 1-31, 2010. https://doi.org/10.1063/1.3531573
[28] Seni, H., Karamitaheri, H., "Thermal conductance engineering by structural modification of width modulated graphene nanoribbons", Journal of Nanoelectronics and Optoelectronics, Vol. 14, pp. 204-210, 2019. https://doi.org/10.1166/jno.2019.2474