The Fault Diagnosis and Control of the Boost Converter Switching System in Energy Conversion Systems

Document Type : Original Article

Authors

1 Department of Control Engineering, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran

2 Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

In this article, through using the theory of hybrid dynamical systems, the boost converter was modeled as a switching system. Then, by taking into account parameter uncertainty, input disturbance, and variable state delay in the presence of a switching with a constraint of average dwell time, the design problem of fault diagnosis along with output feedback-based control-   has been formulated as a multi-objective optimization problem. Onel2-gain performance index guarantees the robustness of the fault to disturbance; the other l2-gain performance criterion guarantees the sensitivity of the residual to fault. By adopting a switchable Lyapunov function, sufficient conditions have been obtained for fault detection along with control in terms of linear matrix inequalities. In this research, an approximate method was used; that is, an averaged state-space model of the boost converter. The simulation results showed the effectiveness of the present approach.

Keywords

Main Subjects


[1]   Sira Ramírez, H.J., and Silva-Ortigoza, R., Control design techniques in power electronics devices. London: Springer, 2006.
[2]     Bento, F., and Marques Cardoso, A. J., "Open-circuit fault diagnosis and fault tolerant operation of interleaved dc–dc boost converters for homes and offices", IEEE Trans. on Ind. Applicat., Vol. 55, No. 5, pp. 4855–4864, Sep. 2019, https://doi.org/10.1109/TIA.2019.291682.
[3]     Ahmad, M. W., Gorla, N. B. Y., Malik, H., and Panda, S. K., "A fault diagnosis and postfault reconfiguration scheme for interleaved boost converter in pv-based system", IEEE Trans. Power Electron., Vol. 36, No. 4, pp. 3769–3780, Apr. 2021, https://doi.org/10.1109/TPEL.2020.3018540.
[4]     Siouane, S., Jovanovic, S., and Poure, P., "Open-switch fault-tolerant operation of a two-stage buck/buck–boost converter with redundant synchronous switch for pv systems", IEEE Trans. Ind. Electron., Vol. 66, No. 5, pp. 3938–3947, May 2019, https://doi.org/10.1109/TIE.2018.2847653.
[5]     Li, C., Yu, Y., Tang, T., Liu, Q., and Peng, X., "A robust open-circuit fault diagnosis method for three-phase interleaved boost converter", IEEE Trans. Power Electron., Vol. 37, No. 9, pp. 11187–11198, Sep. 2022, https://doi.org/10.1109/TPEL.2022.3169167.
[6]     Zhuo, S., Gaillard, A., Xu, L., Liu, C., Paire, D., and Gao, F., "An observer-based switch open-circuit fault diagnosis of dc–dc converter for fuel cell application", IEEE Trans. on Ind. Applicat., Vol. 56, No. 3, pp. 3159–3167, May 2020, https://doi.org/10.1109/TIA.2020.2978752
[7]     Al-Sheikh, H., Bennouna, O., Hoblos, G., and Moubayed, N., "Modeling, design and fault analysis of bidirectional DC-DC converter for hybrid electric vehicles", in 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, Jun. 2014, pp. 1689–1695. https://doi.org/10.1109/ISIE.2014.6864869.
[8]     Jamshidpour, E., Poure, P., and Saadate, S., "Common switch fault diagnosis for two-stage dc-dc converters used in energy harvesting applications", Electronics, Vol. 8, No. 3, p. 293, Mar. 2019, https://doi.org/10.3390/electronics8030293.
[9]     Pazouki, E., Sozer, Y., and De Abreu-Garcia, J. A., "Fault diagnosis and fault-tolerant control operation of nonisolated dc–dc converters", IEEE Trans. on Ind. Applicat., Vol. 54, No. 1, pp. 310–320, Jan. 2018, https://doi.org/10.1109/TIA.2017.2751547
[10]   Poon, J., Jain, P., Konstantakopoulos, I. C., Spanos, C., Panda, S. K., and Sanders, S. R., "Model-based fault detection and identification for switching power converters", IEEE Trans. Power Electron., Vol. 32, No. 2, pp. 1419–1430, Feb. 2017, https://doi.org/10.1109/TPEL.2016.2541342.
[11]   Liu, Z., Xu, Z., and Zhang, X., "A novel real-time fast fault-tolerance diagnosis and fault adjustment strategy for m-phase interleaved boost converter", IEEE Access, Vol. 9, pp. 11776–11786, 2021, https://doi.org/10.1109/ACCESS.2021.3050705.
[12]   Xu, L., Ma, R., Xie, R., Xu, J., Huangfu, Y., and Gao, F., "Open-circuit switch fault diagnosis and fault- tolerant control for output-series interleaved boost dc–dc converter", IEEE Trans. Transp. Electrific., Vol. 7, No. 4, pp. 2054–2066, Dec. 2021, https://doi.org/10.1109/TTE.2021.3083811.
[13]   Pazouki, E., De Abreu-Garcia, J. A., and Sozer, Y., "A novel fault-tolerant control method for interleaved dc–dc converters under switch fault condition", IEEE Trans. on Ind. Applicat., Vol. 56, No. 1, pp. 519–526, Jan. 2020, https://doi.org/10.1109/TIA.2019.2953030.
[14]   Pan, Y., et al., "A dual-loop control to ensure fast and stable fault-tolerant operation of series resonant dab converters", IEEE Trans. Power Electron., Vol. 35, No. 10, pp. 10994–11012, Oct. 2020, https://doi.org/10.1109/TPEL.2020.2975348.
[15]   Laadjal, K., Sahraoui, K., and Cardoso, A. J. M., "On-Line fault diagnosis of dc-link electrolytic capacitors in boost converters using the stft technique", IEEE Trans. Power Electron., Vol. 36, No. 6, pp. 6303–6312, Jun. 2021, https://doi.org/10.1109/TPEL.2020.3040499.
[16]   Chen, L., Zhao, X., and Tang, S. X., "Online fault diagnosis method for high-performance converters using inductor voltage polar signatures", IEEE Access, Vol. 8, pp. 179778–179788, 2020, https://doi.org/10.1109/ACCESS.2020.3024549.
[17]   Kong, L., and Nian, H., "Transient modeling method for faulty dc microgrid considering control effect of dc/ac and dc/dc converters", IEEE Access, Vol. 8, pp. 150759–150772, 2020, https://doi.org/10.1109/ACCESS.2020.3017015.
[18]   Zhang, L., Cui, N., Liu, M., and Zhao, Y., "Asynchronous filtering of discrete-time switched linear systems with average dwell time", IEEE Trans. Circuits Syst. I, Vol. 58, No. 5, pp. 1109–1118, May 2011, https://doi.org/10.1109/TCSI.2010.2092151.
[19]   Eddoukali, Y., Benzaouia, A., and Ouladsine, M., "Integrated fault detection and control design for continuous-time switched systems under asynchronous switching", ISA Transactions, Vol. 84, pp. 12–19, Jan. 2019, https://doi.org/10.1016/j.isatra.2018.10.009.
[20]   Shokouhi-Nejad, H., Rikhtehgar Ghiasi, A., and Badamchizadeh, M. A., "Robust simultaneous fault detection and control for a class of nonlinear stochastic switched delay systems under asynchronous switching", Journal of the Franklin Institute, Vol. 354, No. 12, pp. 4801–4825, Aug. 2017, https://doi.org/10.1016/j.jfranklin.2017.05.037.
[21]   Wang, D., Wang, W., and Shi, P., "Robust fault detection for switched linear systems with state delays", IEEE Trans. Syst., Man, Cybern. B, Vol. 39, No. 3, pp. 800–805, Jun. 2009, https://doi.org/10.1109/TSMCB.2008.2007498.
[22]   Shokouhi-Nejad, H., Ghiasi, A. R., Badamchizadeh, M. A., and Pezeshki, S., "H/H_ Simultaneous fault detection and control for continuous-time linear switched delay systems under asynchronous switching", Transactions of the Institute of Measurement and Control, Vol. 41, No. 1, pp. 263–275, Jan. 2019, https://doi.org/10.1177/0142331218754622.
[23]   Na, Y., Li, L., Ding, S. X., and Abdo, A., "A fault detection scheme for uncertain switched systems under asynchronous switching", IFAC-PapersOnLine, Vol. 51, No. 24, pp. 117–122, 2018, https://doi.org/10.1016/j.ifacol.2018.09.544.
[24]   Zhao, X., Zhang, L., Shi, P., and Liu, M., "Stability and stabilization of switched linear systems with mode-dependent average dwell time", IEEE Trans. Automat. Contr., Vol. 57, No. 7, pp. 1809–1815, Jul. 2012, https://doi.org/10.1109/TAC.2011.2178629.
[25]   Davoodi, M. R., Golabi, A., Talebi, H. A., and Momeni, H. R., "simultaneous fault detection and control design for switched linear systems: a linear matrix inequality approach", Journal of Dynamic Systems, Measurement, and Control, Vol. 134, No. 6, p. 061010, Nov. 2012, https://doi.org/10.1115/1.4006372.
[26]   Li, Z., Mazars, E., Zhang, Z., and Jaimoukha, I. M., "State-space solution to the H−/H∞ fault-detection problem", Int. J. Robust Nonlinear Control, Vol. 22, No. 3, pp. 282–299, Feb. 2012, https://doi.org/10.1002/rnc.1690.
[27]   Ejtahed, S. H., Pariz, N., and Karimpour, A., "Integrated fault detection and robust control for linear uncertain switched systems with mode-dependent time-varying state delay", Control and Optimization in Applied Mathematics, p., 2022, https://doi.org/10.30473/coam.2022.62848.1192.
[28]   Li, J., and Yang, G.-H., "Simultaneous fault detection and control for switched systems under asynchronous switching", Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, Vol. 227, No. 1, pp. 70–84, Jan. 2013, https://doi.org/10.1177/0959651812443922.
[29]   Iftikhar, K., Khan, A. Q., and Abid, M., "Optimal fault detection filter design for switched linear systems", Nonlinear Analysis: Hybrid Systems, Vol. 15, pp. 132–144, Feb. 2015, https://doi.org/10.1016/j.nahs.2014.09.002
[30]   Davoodi, M. R., Golabi, A., Talebi, H. A., and Momeni, H. R., "Simultaneous fault detection and control design for switched linear systems based on dynamic observer", Optim. Control Appl. Meth., Vol. 34, No. 1, pp. 35–52, Jan. 2013, https://doi.org/10.1002/oca.1026.
[31]   Du, D., Jiang, B., Shi, P., and Karimi, H. R., "Fault detection for continuous-time switched systems under asynchronous switching", Int. J. Robust Nonlinear Control, Vol. 24, No. 11, pp. 1694–1706, Jul. 2014, https://doi.org/10.1002/rnc.2961.