Numerical Study of Thethermohydraulic and Energy-saving Performance of a Graphene Nanoplatelet-platinum Hybrid Nanofluid inside a Manifold Microchannel Heat Sink

Document Type : Original Article

Authors

Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran

Abstract

Due to high heat flux in electronic equipment, the better cooling of these equipment using microchannel heat sink is of interest to many researchers today. However, paying attention to reducing energy consumption is also one of the essential issues that has attracted the attention of researchers and manufacturers.Thermohydraulic characteristics and energy saving of a water-based graphene nanoplatelet-platinum hybrid nanofluid inside a manifold microchannel heat sink for laminar flow have been  investigated numerically for various nanofluid volume fractions (φ=0.02, 0.06, and 0.1%) and Reynolds number (Re=20 to 100). The Properties of hybrid nanofluid were considered temperature-dependent. According to studies conducted in this research, graphene nanoplatelet-platinum hybrid nanofluid in a manifold microchannel heat sink improves heat transfer performance. Cooling uniformity factor as a criterion for diagnosing of hotspot regions decreases with an increase in Reynolds number and nanofluid volume fraction. Nusselt number (Nu) increases with an increase in  the Reynolds and nanofluid volume fraction. Numax=38.10 is obtained for Re=100 and φ=0.1%  and Numin=24.17 is obtained for Re=20 and φ=0. Thermal resistance decreases with an increase in nanofluid volume fraction and Reynolds number. With an increase in Reynolds number andnanofluid volume fraction, pressure drop increases. Also, at low Reynolds numbers (Re=20), pressure drop differences in different volume fractions are insignifcant. For all nanofluid volume fraction values, the performane evaluation criterion (PEC) value is greater than 1, which indicates the improvement of manifold microchannel heat sink efficiency using nanofluids. Also, for all Reynolds values, the performance evaluation criterion with an increase in volume fraction increases. PECmax for Re=20 and φ= 0.02% is achieved. There is no significant difference in the performance evaluation criterion for higher volume concentrations (0.06% and 0.1%) and higher Reynolds numbers (40 to 100).

Keywords

Main Subjects


[1] Sheikhzadeh, G., Arbaban, M., "Natural Convection of Cu-water Nanofluid in Concentric Annuli with Six Radial Fins Attached to Inner Cylinder", Journal of Energy Engineering & Management, Vol. 2, No.2, pp. 52-61, 2012, (In persian).
[2] Mortazavi, h., ahmadi, A., bayareh, M., "Feasibility of Usage Recovery Heat Exchanger in Vapor Compression Refrigeration Cycle by Using Thermodynamic, Heat Transfer and Economic Analyses", Journal of Energy Engineering & Management, Vol. 8. No. 3, pp. 28-39, 2018, (In persian), doi:10.22052/8.3.28.
[3] Izadi, S., Mostajeran Goortani, B., alemrajabi, A. A. A., "Study of Heller Cooling Towers and Increasing their Efficiency, Case Study: Shahid Mohammad Montazeri Power Plant", Journal of Energy Engineering & Management, Vol. 8. No. 4, pp. 50-61, 2019, (In persian), doi:10.22052/8.4.50.
[4] Shahsavar, A., "Experimental Investigation of Thermal and Electrical Performances of a Nanofluid-cooled Photovoltaic/Thermal System Equipped with a Sheet-and-grooved Serpentine Tube Collector", Journal of Energy Engineering & Management, Vol. 12. No. 1, pp. 120-129, 2022, (In persian), doi: 10.22052/12.1.120.
[5] Kermani, E., "Manifold micro-channel cooling of photovoltaic cells for high-efficiency solar energy conversion", M.S. Thesis, University of Maryland, 2008.
[6] Sarangi, S., Bodla, K.K., Garimella, S.V., Murthy, J.Y., "Manifold microchannel heat sink design using optimization under uncertainty", International Journal of Heat and Mass Transfer, Vol. 69, pp. 92–105, 2014, doi:10.1016/j.ijheatmasstransfer.2013.09.067.
[7] Drummond, K.P., Back, D., Sinanis, M.D., Janes, D.B., Peroulis, D., Weibel, J.A., Garimella, S.V., "A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics", International Journal of Heat and Mass Transfer, Vol. 117, pp. 319–330, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.015.
[8] Yang, M., Cao, B.Y., "Numerical study on flow and heat transfer of a hybrid microchannel cooling scheme using manifold arrangement and secondary channels", Applied Thermal Engineering, Vol. 159, 2019, doi: 10.1016/j.applthermaleng. 2019.113896.
[9] Babaei, M., Sheikhzadeh, G., Abbasian Arani, A., "Numerical Investigation of Geometric Parameters Effects on Heat Transfer Enhancement in a Manifold Microchannel Heat Sink". International Journal of Engineering, Vol.35, No. 5, pp. 943-953, 2022, doi: 10.5829/ije.2022.35.05b.10.
[10] Akbarzade, S., Sedighi, K., Farhadi, M., Ebrahimi, M., "Experimental Investigation of Forced Convection Heat Transfer in a Car Radiator Filled with SiO2-Water Nanofluid", International Journal of Engineering, Vol. 27, No.2,pp. 333-340, 2014, doi:10.5829/idosi.ije.2014.27.02b.17.
[11]Alagappan, N., Karunakaran, N., "Performance Investigation of 405 Stainless Steel Thermosyphon using Cerium (IV) Oxide Nano Fluid", International Journal of Engineering, Vol. 30, No.4,pp. 575-581,2017, doi: 10.5829/idosi.ije.2017.30.04a.16.
[12]Amirabedia, M., Jafarmadar, S., Khalilarya, S., Kheyrollahi, J., "Experimental Comparison the Effect of Mn2O3 and Co3O4 Nano Additives on the Performance and Emission of SI Gasoline Fueled with Mixture of Ethanol and Gasoline", International Journal of Engineering, Vol. 32, No.5,pp. 769-776, 2019, doi:10.5829/ije.2019.32.05b.19.
[13]Rahimian, A., Kazeminejad, H., Khalafi, H., Mirvakili, S., Akhavan, A., "An Experimental Study of the Steel Cylinder Quenching in Water-based Nanofluids", International Journal of Engineering, Vol. 33, No.1, pp. 28-33,2020, doi:10.5829/ije.2020.33.01a.04.
[14]Ranjbarzadeh, R., Karimipour, A., Afrand, M., Isfahani, AHM., Shirneshan, A., "Empirical analysis of heat transfer and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe", Applied Thermal Engineering, Vol. 126, pp. 538-547, 2017, doi: 10.1016/j.applthermaleng.2017.07.189.
[15]Sadri, R., Hosseini, M., Kazi, S.N., Bagheri, S., Ahmed, S.M., Ahmadi, G., Zubir, N., Sayuti, M., Dahari, M., "Study of environmentally friendly and facile functionalization of graphene nanoplatelet and its application in convective heat transfer", Energy Conversion and Management, Vol. 150, pp.  26-36, 2017, doi: 10.1016/j.enconman.2017.07.036.
[16] Esfahani, M.R., Nunna, M.R., Languri, E.M., Nawaz, K., Cunningham, G., "Experimental study on heat transfer and pressure drop of in-house synthesized graphene oxide nanofluids", Heat Transfer Engineering, pp. 1722-1735, 2018, doi: 10.1080/01457632.2018.1497001.
[17] Ranjbarzadeh, R., Meghdadi Isfahani, A.H., Afrand, M., Karimipour, A., Hojaji, M., "An experimental study on heat transfer and pressure drop of water/graphene oxide nanofluid in a copper tube under air cross-flow: Applicable as a heat exchanger", Applied Thermal Engineering, Vol. 125, pp. 69-79, 2017, doi: 10.1016/j.applthermaleng.2017.06.110.
[18] Paramashivaiah, B., Rajashekar, C., "Studies on Effect of Injection Timing of Graphene Nanoparticles Blended Simarouba Biodiesel Blend on CI Engine", International Journal of Engineering, Vol. 30, No.8,pp. 1205-1214,  2017, doi: 10.5829/ije.2017.30.08b.13.
[19] Bahaya, B., Johnson, D. W., Yavuzturk, C. C., "On the Effect of Graphene Nanoplatelets on Water–Graphene Nanofluid Thermal Conductivity, Viscosity, and Heat Transfer Under Laminar External Flow Conditions", Journal of Heat Transfer, Vol. 140, 2018, doi: 10.1115/1.4038835.
[20] Narendran, G., Gnanasekaran, N., Perumal, D. A., "Experimental Investigation on Heat Spreader Integrated Microchannel Using Graphene Oxide Nanofluid", Heat Transfer Engineering, Vol. 41, NO.14, pp. 1252-1274,2020, doi: 10.1080/01457632.2019.1637136.
[21] Ong, Y.S., Shaari, K.Z.K., Laziz, A.M., Lu, I.L., Mohamad, M.F.R.S., Sufian, S., "Thermal Performance of Graphene Oxide Nanofluid in Microchannel Heat Exchanger", Journal of Enhanced Heat Transfer, Vol. 27, pp. 439–461, 2020, doi: 10.1615/JEnhHeatTransf.2020033046.
[22] Younis, A., Elsarrag, E., Alhorr, Y., Onsa, M., "The influence of Al2O3-ZnO-H2O nanofluid on the thermodynamic performance of photovoltaic-thermal hybrid solar collector system", Innovative Energy & Research, Vol. 7, No.1, 2018, doi: 10.4172/2576-1463.1000187.
[23] Sheikhzadeh, G.A., Barzoki, F., Abbasian, A.A.A., Pourfattah, F., "Wings shape affects the behavior of hybrid nanofluid inside a channel having a vortex generator", Heat and Mass Transfer, Vol. 55, pp. 1969–1983, 2019, doi: 10.1007/s00231-018-2489-x.  
[24] Abbasian, A.A.A., Monfaredi, F., Aghaei, A., Afrand, M., Chamkha, A.J., Emami, H., "Thermal radiation effect on the flow field and heat transfer of Co3O4-diamond/EG hybrid nanofluid using experimental data: A numerical study". The European Physical Journal Plus, Vol. 134, 2019, doi:10.1140/epjp/i2019-12431-7.
[25]Kumar, V., Sarkar J., "Particle ratio optimization of Al2O3-MWCNT hybrid nanofluid in minichannel heat sink for best hydrothermal performance", Applied Thermal Engineering, Vol. 165, pp. 1359-4311, 2020, doi: 10.1016/j.applthermaleng.2019.114546.
[26]Abbasian, A.A.A., Aberoumand, H., "Stagnation-point flow of Ag-CuO/water hybrid nanofluids over a permeable stretching/shrinking sheet with temporal stability analysis", Powder Technology, Vol. 380, 152-163. 2021, doi: 10.1016/j.powtec.2020.11.043.
[27]Yarmand, H., Gharehkhani, S., Ahmadi, G., Shirazi, S.F.S., Baradaran, S., Montazer, E., Zubir, M.N.M., Alehashem, M.S, Kazi, S.N., Dahari, M., "Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer", Energy Conversion and Management, Vol. 100, pp. 419-428, 2015, doi: 10.1016/j.enconman.2015.05.023.
[28]Yarmand, H., Gharehkhani, S.,  Shirazi, S.F.S., Goodarzi, M., Amiri, A., Sarsam, W.S., Alehashem, M.S., Dahari, M., Kazi, S.N., "Study of synthesis, stability and thermophysical properties of graphene nanoplatelet/platinum hybrid nanofluid", International Communications in Heat and Mass Transfer, Vol. 77, pp. 15-21, 2016, doi: 10.1016/j.icheatmasstransfer.2016.07.010.
[29]Bahiraei, M., Heshmatian, S., "Efficacy of a novel liquid block working with a nanofluid containing graphene nanoplatelets decorated with silver nanoparticles compared with conventional CPU coolers", Applied Thermal Engineering, Vol. 127, pp. 1233-1245, 2017, doi: 10.1016/j.applthermaleng.2017.08.136.
[30]Yarmand, H., Zulkifli, N.W.B.M, Gharehkhani, S., Shirazi, S.F.S., Alrashed, A.A.A.A., Ali, M.A.B., Dahari, M., Kazi, S.N., "Convective heat transfer enhancement with graphene nanoplatelet/platinum hybrid nanofluid", International Communications in Heat and Mass Transfer, Vol. 88, pp. 120-125,2017, doi: 10.1016/j.icheatmasstransfer.2017.08.010.
[31]Bahiraei, M., Heshmatian, S., "Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene–silver nanoparticles", Energy Conversion and Management, Vol. 168, pp. 357-370, 2018, doi: 10.1016/j.enconman.2018.05.020.
[32]Bahiraei, M., Mazaheri, N.,"Application of a novel hybrid nanofluid containing graphene–platinum nanoparticles in a chaotic twisted geometry for utilization in miniature devices: thermal and energy efficiency considerations". International Journal of Mechanical Sciences, Vol. 138-139. pp. 337–349, 2018, doi: 10.1016/j.ijmecsci.2018.02.030.
[33]Bahiraei, M., Jamshidmofid, M., Goodarzi, M., "Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs", Journal of Molecular Liquids, Vol. 273, pp. 88-98, 2019, doi: 10.1016/j.molliq.2018.10.003.
[34]Khosravi, R., Rabiei, S., Bahiraei, M., Teymourtash, A.R., "Predicting entropy generation of a hybrid nanofluid containing graphene–platinum nanoparticles through a microchannel liquid block using neural networks", International Communications in Heat and Mass Transfer, Vol. 109, pp. 104351, 2019, doi: 10.1016/j.icheatmasstransfer.2019.104351.
[35]Bahiraei, M., Mazaheri, N., Hassanzamani, S.M.S., "Efficacy of a new graphene–platinum nanofluid in tubes fitted with single and twin twisted tapes regarding counter and co-swirling flows for efficient use of energy", International Journal of Mechanical Sciences, Vol. 150, pp. 290-303, 2019, doi: 10.1016/j.ijmecsci.2018.10.036.
[36]Bahiraei, M., Mazaheri, N., Rizehvandi, A., "Application of a hybrid nanofluid containing graphene nanoplatelet–platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs", Applied Thermal Engineering, Vol. 149, pp. 588-601, 2019, doi: 10.1016/j.applthermaleng.2018.12.072.
[37]Goodarzi, M., Tlili, I., Tian, Z., Safaei, M.R., "Efficiency assessment of using graphene nanoplatelets-silver/water nanofluids in microchannel heat sinks with different cross-sections for electronics cooling", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 30, pp. 347-372, 2020, doi: 10.1108/HFF-12-2018-0730.
[38]Balaji, T., Selvam, C., Mohan Lal, D., Harish, S., "Enhanced heat transport behavior of microchannel heat sink with graphene based nanofluids", International Communications in Heat and Mass Transfer, Vol. 117, pp. 104716, 2020, doi: 10.1016/j.icheatmasstransfer.2020.104716.
[39]Khosravi, R., Teymourtash, A.R., Passandideh Fard, M., Rabiei, S., Bahiraei, M., "Numerical study and optimization of thermohydraulic characteristics of a graphene–platinum nanofluid in finned annulus using genetic algorithm combined with decision-making technique", Engineering with Computers, Vol. 37, pp. 2473–2491, 2021, doi: 10.1007/s00366-020-01178-6.  
[40] Glassbrenner, C.J., Slack, G.A., "Thermal Conductivity of Silicon and Germanium from 3K to the Melting Point", Physical Review. Vol. 134,pp. 1058-1069, 1964. doi: 10.1103/PhysRev.134.A1058.