This paper presents modified rotor designs for two conventional V- and Flat-type BLDC motors to reduce the torque ripple. For gaining an insight into design features, the torque production characteristics are described at the beginning of the paper. By analyzing and comparing performance parameters including cogging torque, air gap flux density, back EMF, and torque average, the paper tries to describe how the torque ripple can be affected and reduced by shaping the air gap and creating specific holes in the rotor magnetic path. First, the conventional V-type BLDC motor was analyzed. Sensitivity analysis was deployed to shape the air gap and to create holes in the rotor structure. Then, all the results for both conventional and proposed V-type models were compared. Consequently, the torque ripple was effectively reduced without affecting other performance parameters. Next, the Flat-type BLDC motor was considered. Following the sensitivity analysis, the air gap was shaped, and holes were created. Similar to the proposed V-type design, the proposed Flat-type design effectively reduced the torque ripple compared with the conventional design. The results were obtained using finite element analysis; it confirmed the effectiveness of the proposed designs in both V- and Flat-type BLDC motors.
[1] Vagati, A., Pellegrino, G., Guglielmi, P., "Comparison between SPM and IPM motor drives for EV application", The XIX International Conference on Electrical Machines - ICEM 2010, Rome, Italy, 2010, pp. 1-6, doi:10.1109/ICELMACH.2010.5607911.
[2] Sumega, M., Zossak, S., Varecha, P., Rafajdus, P., "Sources of torque ripple and their influence in BLDC motor drives", Transportation Research Procedia, the 13th International Scientific Conference on Sustainable, Modern and Safe Transport, 2019, pp. 519-526, doi:10.1016/j.trpro.2019.07.075.
[3] Krishnan, R., "Permanent magnet synchronous and brushless DC motor drives", Blacksburg, Virginia, USA: Taylor & Francis Group, 2010, doi:10.1201/9781420014235.
[4] Yoon K., Kwon, B., "Optimal Design of a New Interior Permanent Magnet Motor Using a Flared-Shape Arrangement of Ferrite Magnets", IEEE Trans. Magn., Vol. 52, pp. 1-4, Jul. 2016, doi:10.1109/TMAG.2016.2524505.
[5] Tudorache, T., Trifu, I., "Permanent-magnet synchronous machine cogging torque reduction using a hybrid model", IEEE Trans. Magn., Vol. 48, pp. 2627–2632, Oct. 2012, doi:10.1109/TMAG.2012.2198485.
[6] Ren, W., Xu, Q., Li, Q., "Reduction of cogging torque and torque ripple in interior PM machines with asymmetrical V-type rotor design", IEEE Trans. Magn., Vol. 52, pp. 1-5, Jul. 2016, doi:10.1109/TMAG.2016.2530840.
[7] Kang, G., Son, Y., Kim, G., Hur, J., "A novel cogging torque reduction method for interior-type permanent-magnet motor", IEEE Trans. Ind. Appl., Vol. 45, pp. 119-125, Jan/Feb. 2009, doi:10.1109/TIA.2008.2009662.
[8] Mousavi-Aghdam, S. R., Kholousi, A., "Design and analysis of a new topology of rotor magnets in brushless DC motors to reduce cogging torque", International Journal of Industrial Electronics Control and Optimization, Vol. 4, pp. 77-86, Jan. 2021, doi:10.22111/ieco.2020.34565.1282.
[9] Fei, W., Zhu, Z. Q., "Comparison of cogging torque reduction in permanent magnet brushless machines by conventional and herringbone skewing techniques", IEEE Trans. Energy Convers., Vol. 28, pp. 664-674, Sep. 2013, doi:10.1109/TEC.2013.2270871.
[10] Zhao, W., Lipo, T.A., Kwon, B., "Torque pulsation minimization in spoke-type interior permanent magnet motors with skewing and sinusoidal permanent magnet configurations", IEEE Trans. Magn., Vol. 51, pp.1-4, Nov. 2015, doi:10.1109/TMAG.2015.2442977.
[11] Chen, N., Ho, S. L., Fu, W. N., "Optimization of permanent magnet surface shapes of electric motors for minimization of cogging torque using FEM", IEEE Trans. Magn., Vol. 46, pp. 2478–2481, Jun. 2010, doi:10.1109/TMAG.2010.2044764.
[12] Zhou, M., Zhang, X., Zhao, W., Ji, J., Hu, J., "Influence of magnet shape on the cogging torque of a surface-mounted permanent magnet motor", Chinese Journal of Electrical Engineering, Vol. 5, pp. 40-50, Dec. 2019, doi:10.23919/CJEE.2019.000026.
[13] Allan G. de Castro, et al., "Improved finite control-set model-based direct power control of BLDC motor with reduced torque ripple", IEEE Trans. Ind. Appl., Vol. 54, pp. 4476–4484, Sep./Oct. 2018, doi:10.1109/TIA.2018.2835394.
[14] Xia, K., Ye, Y., Ni, J., Wang, Y., Xu, P., "Model predictive control method of torque ripple reduction for BLDC motor", IEEE Trans. Magn. , Vol. 56, pp. 1-6, Jan. 2020, doi:10.1109/TMAG.2019.2950953.
[15] Castro, A. G.,et al., "Finite control-set predictive power control of BLDC drive for torque ripple reduction", IEEE Latin America Transactions, Vol. 16, pp. 1128-1135, Apr. 2018, doi:10.1109/TLA.2018.8362147.
[16] Shi, T., Cao, Y., Jiang, G., Li, X., Xia, C., "A torque control strategy for torque ripple reduction of brushless DC motor with non-ideal back electromotive force", IEEE Trans. Ind. Electron. Vol. 64, pp. 4423-4433, Jun. 2017, doi:10.1109/TIE.2017.2674587.
[17] Lee, J. H. , Kim, D. H. , Park, I. H., "Minimization of higher back-EMF harmonics in permanent magnet motor using shape design sensitivity with B-spline parameterization", IEEE Trans. Magn., Vol. 39, pp. 1269-1272, May. 2003, doi:10.1109/TMAG.2003.810162.
[18] Liu, T., Zhao, W., Ji, J., Zhu, Sh., Cao, D., "Effects of eccentric magnet on high-frequency vibroacoustic performance in integral-slot SPM machines", IEEE Trans. Energy Convers., Vol. 36, pp. 2393-2403, Sept. 2021, doi:10.1109/TEC.2021.3060752.
[19] Kim, H., Kim, Y.J., Jung, S.Y., "Torque ripple and back EMF harmonic reduction of IPMSM with asymmetrical stator design", in Electrical Machines and Systems (ICEMS), 2017 20th International Conference on. IEEE. 2017, pp. 1-4, doi:10.1109/ICEMS.2017.8056477.
[20] Hua, W., Zhu, X., Wu, Z., "Influence of coil pitch and stator-slot/rotor-pole combination on back EMF harmonics in flux-reversal permanent magnet machines", IEEE Trans. Energy Convers., Vol. 33, pp. 1330–1341, Sep. 2018, doi:10.1109/TEC.2018.2795000.
[21] Li, F., Wang, K., Li, J., Zhang, H. J., "Suppression of even-order harmonics and torque ripple in outer rotor consequent-pole PM machine by multilayer winding", IEEE Trans. Magn., Vol. 54, pp. 1-5, Jun. 2018, doi:10.1109/TMAG.2018.2839740.
[22] Seo, U. J., Chun, Y.D., Choi, J.H., Han, P.W., Koo, D. H., Lee, J., "A technique of torque ripple reduction in interior permanent magnet synchronous motor", IEEE Trans. Magn., Vol. 47, pp. 3240-3243, Oct. 2011, doi:10.1109/TMAG.2011.2150742.
[23] Kim, K. Ch., Koo, D. H., Hong, J. P., Lee, J., "A Study on the Characteristics Due to Pole-Arc to Pole-Pitch Ratio and Saliency to Improve Torque Performance of IPMSM", IEEE Trans. Magn., Vol. 43, pp. 2516-2518, Jun. 2007, doi:10.1109/TMAG.2007.893524.
[24] Lee, S., Kim, Y. J., Jung, S. Y., "Numerical investigation on torque harmonics reduction of interior PM synchronous motor with concentrated winding", IEEE Trans. Magn., Vol. 48, pp. 927-930, Feb. 2012, doi:10.1109/TMAG.2011.2174346.
[25] Wang, K., Zhu, Z. Q., Ombach, G., "Torque improvement of five-phase surface-mounted permanent magnet machine using third-order harmonic", IEEE Trans. Energy Convers., Vol. 29, pp. 735-747 , Sep. 2014, doi:10.1109/TEC.2014.2326521.
[26] Jung, Y. H., Lim, M. S., Yoon, M. H., Jeong, J. S., Hong, J. P., "Torque ripple reduction of IPMSM applying asymmetric rotor shape under certain load condition", IEEE Trans. Energy Convers., Vol. 33, pp. 333–340, Mar. 2018, doi:10.1109/TEC.2017.2752753.
[27] Chen, W., Ma, J., Wu, G., Fang, Y., "Torque ripple reduction of a salient-pole permanent magnet synchronous machine with an advanced step-skewed rotor design", IEEE Access, Vol. 8, pp. 118989–118999, Jun 2020, doi:10.1109/ACCESS.2020.3005762.
[28] Song, Ch. H., Kim, D. H., Kim, K. Ch., "Design of a novel IPMSM bridge for torque ripple reduction", IEEE Trans. Magn., Vol. 57, pp. 1-4, Feb. 2021, doi:10.1109/TMAG.2020.3016985.
[29] Hu, Y., Zhu, S., Xu, L., Jiang, B., "Reduction of torque ripple and rotor eddy current losses by closed slots design in a high-speed PMSM for EHA applications", IEEE Trans. Magn., Vol. 58, pp. 1-6, Feb. 2022, doi:10.1109/TMAG.2021.3083664.
[30] Zhu, Sh., Hu, Y., Liu, Ch., Jiang, B., "Shaping of the air gap in a V-typed IPMSM for compressed-air system applications", IEEE Trans. Magn., Vol. 57, pp. 1-5, Feb. 2021, doi:10.1109/TMAG.2020.3034152.
[31] Abdos, A. A., Moazzen M. E., Gholamian S. A., Hosseini, S. M., "Design Optimization, Voltage Quality, and Torque Ripple Improvement of an Outer Rotor Permanent Magnet Generator for Direct-Drive Wind Turbines Application", Energy: Engineering & Management; Vol. 12, pp. 1-3, 2022, doi: 22052/12.3.52.
[32] Hanselman, D. C., "Brushless permanent magnet motor design", 2nd ed. Cranston, RI, USA: The Writers’ Collective, 2003.
Mousavi-Aghdam, S. R., & Kholousi, A. (2023). Improved Rotor Designs of V- and Flat-type BLDC Motors Aiming at Low Torque Ripple. Energy Engineering and Management, 12(4), 54-67. doi: 10.22052/jeem.2023.113685
MLA
Seyed Reza Mousavi-Aghdam; Amin Kholousi. "Improved Rotor Designs of V- and Flat-type BLDC Motors Aiming at Low Torque Ripple", Energy Engineering and Management, 12, 4, 2023, 54-67. doi: 10.22052/jeem.2023.113685
HARVARD
Mousavi-Aghdam, S. R., Kholousi, A. (2023). 'Improved Rotor Designs of V- and Flat-type BLDC Motors Aiming at Low Torque Ripple', Energy Engineering and Management, 12(4), pp. 54-67. doi: 10.22052/jeem.2023.113685
VANCOUVER
Mousavi-Aghdam, S. R., Kholousi, A. Improved Rotor Designs of V- and Flat-type BLDC Motors Aiming at Low Torque Ripple. Energy Engineering and Management, 2023; 12(4): 54-67. doi: 10.22052/jeem.2023.113685