Load Frequency Control Based on Improved Fuzzy Controller in the Microgrid with Thermoelectric Generator

Authors

Abstract

The Microgrid is a small-scale controlled power system, which can be used in islanded mode or in a grid-connected one to provide power. In the islanded Microgrid, the system frequency will be affected severely by the smallest disturbance which can happen due to light inertia in the system. In the independent Microgrid, several generation sources such as solar, wind, and so on can be considered. In addition to these power plants, the discussion of energy conversion as a result of temperature changes can be considered as a thermoelectric converter. In the present article, the effort has been made to propose a microgrid model which incorporates a Thermoelectric Generator (TEG) system. In this system, due to the variety of uncertainties and load variations, an advanced controller must be developed to improve the dynamic stability and reliability of the microgrid system. The Improved Fuzzy Fractional-Order PID is the suggested controller. The proposed controller is applied to a sample islanded microgrid to establish a robust evaluation and to be checked under parametric changes, great demands, and disturbances. The offered controller is compared with those of other PID, FOPID and FPID controllers. The results of simulations reveal that the proposed controller has a proper and robust performance.

Keywords


[1] Bakar, N. N. A., Hassan, M. Y., Sulaima, M. F., Na’im Mohd Nasir, M. and Khamis, A., "Microgrid and load shedding scheme during islanded mode: A review", Renewable and Sustainable Energy Reviews, vol. 71, pp. 161-169, 2017. [2] Fini, M. H. and Golshan, M. E. H., "Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables", Electric Power Systems Research, vol. 154, pp. 13-22, 2018. [3] شایقی، حسین، آریان‌پور، حمزه، «طراحی مقاوم کنترل‌کنندۀ فازی PID بلادرنگ مبتنی بر الگوریتم بهبودیافته تکامل تفاضلی برای کنترل فرکانس ریزشبکۀ جزیره‌ای با در نظرگرفتن عوامل غیرخطی و عدم‌قطعیت‌ها»، مجله مهندسی برق دانشگاه تبریز، دورۀ 46، شمارۀ 3، صفحات 241ـ256، 1395. [4] Effatnejad, R., Hedayati, M., Choopani, K. and Chanddel, M., Numerical Methods in Selecting Location of Distributed Generation in Energy Network, in Numerical Methods for Energy Applications, Mahdavi Tabatabaei, N., Bizon, N., Eds. Cham, Switzerland: Springer, pp. 935-976, 2021. [5] Hedayati, M., Effatnejad, R., Choopani, K. and Chanddel, M., Numerical Methods for Power System Analysis with FACTS Devices Applications, in Numerical Methods for Energy Applications, Mahdavi Tabatabaei, N., Bizon, N., Eds. Cham, Switzerland: Springer, pp. 977-1017, 2021. [6] Bevrani, H., et al., "Power system frequency control: An updated review of current solutions and new challenges", Electric Power Systems Research, vol. 194, p. 107114, 2021. [7] Sui, X., Tang, Y., He, H. and Wen, J., "Energy-storage-based low-frequency oscillation damping control using particle swarm optimization and heuristic dynamic programming", IEEE Transactions on Power Systems, vol. 29, No. 5, pp. 2539-2548, 2014. [8] Yang, J., Zeng, Z., Tang, Y., Yan, J., He, H. and Wu, Y., "Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory", Energies, vol. 8, No. 3, pp. 2145-2164, 2015. [9] Hossain, M. A., Pota, H. R., Issa, W. and Hossain, M. J., "Overview of AC microgrid controls with inverter-interfaced generations", Energies, vol. 10, No. 9, p. 1300, 2017. [10] Mahmoud, M. S., Alyazidi, N. M. and Abouheaf, M. I., "Adaptive intelligent techniques for microgrid control systems: A survey", International Journal of Electrical Power & Energy Systems, vol. 90, pp. 292-305, 2017. [11] حسامی نقشبندی، علی، شکوهی، شورش، بیورانی، حسن، «کاربرد کنترل‌کنندۀ فازی- عصبی در پایدای ولتاژ و فرکانس ریزشبکه‌های جزیره‌ای»، مجله مهندسی برق دانشگاه تبریز، دورۀ 41، شمارۀ 2، صفحات 41-50، 1391. [12] Wang, H., Zeng, G., Dai, Y., Bi, D., Sun, J. and Xie, X., "Design of a Fractional Order Frequency PID Controller for an Islanded Microgrid: A Multi-Objective Extremal Optimization Method", Energies, vol. 10, No. 10, p. 1502, 2017. [13] Pan, I. and Das, S., "Kriging based surrogate modeling for fractional order control of microgrids", IEEE Transactions on Smart grid, vol. 6, No. 1, pp. 36-44, 2014. [14] Pan, I. and Das, S., "Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO", ISA transactions, vol. 62, pp. 19-29, 2016. [15] Banki, T., Faghihi, F., Soleymani, S., "Frequency control of an island microgrid using reset control method in the presence of renewable sources and parametric uncertainty", Systems Science & Control Engineering, Vol. 8, No. 1, pp. 500-507, 2020. [16] Abouheaf , M., Mahmoud, M. and Hussain, S., "A novel approach to control of autonomous microgrid systems", International Journal of Energy Engineering, vol. 5, No. 5, pp. 125-136, 2015. [17] Kuznetsova, E., Li, YF., Ruiz, C., Zio, E., Ault, G. and Bell, K., "Reinforcement learning for microgrid energy management", Energy, vol. 59, pp. 133-146, 2013. [18] Li, FD., Wu, M., He, Y. and Chen, X., "Optimal control in microgrid using multi-agent reinforcement learning", ISA transactions, vol. 51, pp. 743-751, 2012. [19] براتی، حسن، امین‌زاده، هادی، «کنترل توان و فرکانس بار مبتنی بر روش کنترلی شیب افتی بهبودیافته در سیستم ترکیبی توربین بادی، فتوولتائیک و پیل سوختی در ریزشبکه‌های مستقل»، نشریه علمی‌‌پژوهشی مهندسی و مدیریت انرژی، دورۀ 6، شمارۀ 1، صفحات 28-39، 1395. [20] امیری، فرهاد، مرادی، محمد حسن، «استراتژی کنترلی جدید برای کنترل ریزشبکۀ ایزوله»، نشریه علمی‌‌پژوهشی مهندسی و مدیریت انرژی، دورۀ 10، شمارۀ 4، 60ـ73، 1399. [21] Ismail, B. I. and Ahmed, W. H., "Thermoelectric power generation using waste-heat energy as an alternative green technology", Recent Patents on Electrical & Electronic Engineering (Formerly Recent Patents on Electrical Engineering), vol. 2, No. 1, pp. 27-39, 2009. [22] Montecucco, A., Siviter, J. and Knox, A. R., "The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel", Applied Energy, vol. 123, pp. 47-54, 2014. [23] Feng, Y., Chen, L., Meng, F. and Sun, F., "Influences of the Thomson effect on the performance of a thermoelectric generator-driven thermoelectric heat pump combined device", Entropy, vol. 20, No. 1, p. 29, 2018. [24] Ferrari, F. (2016, Sept.). Modelling and Dynamics of Thermoelectric Generators [Online]. Available:https://www.slideshare.net/FelipeFerrari15/Modelling-and-Dynamics-of-Thermoelectric-Generators.[Accessed Nov.12, 2018]. [25] Esmaeili, M., Shayeghi, H., Mohammad Nejad, H. and Younesi, A., "Reinforcement learning based PID controller design for LFC in a microgrid", COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, vol. 36, No. 4, pp. 1287-1297, 2017. [26] Liu, L. and Zhang, S., "Robust fractional-order PID controller tuning based on Bode’s optimal loop shaping", Complexity, vol. 2018, No. 3, pp. 1-14, 2018. [27] Khooban, M. H., Dragicevic, T., Blaabjerg, F. and Delimar, M., "Shipboard microgrids: a novel approach to load frequency control", IEEE Transactions on Sustainable Energy, vol. 9, No.2, pp. 843-852, 2018. [28] Al-Dhaifallah, M., Kanagaraj, N. and Nisar, K. S., "Fuzzy fractional-order PID controller for fractional model of pneumatic pressure system", Mathematical Problems in Engineering, vol. 2018, No. 2, 2018.