Application of Guide Blades for Improving the Performance of Savonius Wind Turbines

Authors

Abstract

The application of guide blades is an appropriate method for improving the aerodynamic performance of Savonius wind turbines. Guide blades gather wind energy around the turbine and guide them into the concave side of the Savonius rotor. In this paper, a numerical investigation is conducted to evaluate the effect of the guide blades on the performance of Savonius turbines. ANSYS Fluent 16.0 software is applied for the simulation of turbulent and transient flow around the turbine. Suggested designs for guide blades are 4, 5, and 6 blades which are located in the angles of 30, 40, 50, and 60 degrees. The numerical results of power and torque coefficients show that guide blades have significantly improved the performance of Savonius turbines.  For a turbine with 5 guide blades located at the angle of 30 degrees, maximum power coefficient is 0.51, which indicates an increase of 183% compared to a single Savonius turbine without the guide blades. For turbines with 4 and 6 guide blades, maximum power coefficients are 0.42 and 0.49 respectively; this finding shows an increase of 133% and 171% in comparison with a single Savonius rotor without guide blades.

Keywords


[1] Spera, D. A., ''Introduction to Modern Wind Turbines. Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering'', pp. 47-72, 1994 [2] Schubel, P. J. and Crossley, R. J, ''Wind Turbine Blade Design'', Energies, Vol. 5, No. 9, pp. 3425-3449, 2012. [3] White, F. M., ''Fluid Mechanics'', WCB, Ed McGraw-Hill Boston, 1999. [4] Paraschivoiu, I., "Wind Turbine Design: With Emphasis on Darrieus Concept", Presses Inter Polytechnique, 2002. [5] Fujisawa, N., ''On the Torque Mechanism of Savonius Rotors'', Journal of Wind Engineering and Industrial Aerodynamics, Vol. 40, No. 3, pp. 277-292, 1992. [6] Lee, J. H., Lee, Y. T. and Lim, H. C., ''Effect of Twist angle on The Performance of Savonius Wind Turbine'', Renewable Energy, Vol. 89, pp. 231-244, 2016. [7] Akwa, J. V., da Silva Júnior, G. A. and Petry, A. P., ''Discussion on The Verification of The Overlap Ratio Influence on Performance Coefficients of a Savonius Wind Rotor Using Computational Fluid Dynamics'', Renewable Energy, Vol. 38, No. 1, pp. 141-149, 2012. [8] Morshed, K. N., ''Experimental and Numerical Investigations on Aerodynamic Characteristics of Savonius Wind Turbine with Various Overlap ratios'', 2010. [9] Kumbernuss, J., Chen, J., Yang, H. X. and Lu, L., "Investigation Into The Relationship of The Overlap Ratio and Shift Angle of Double Stage Three Bladed Vertical Axis Wind Turbine (VAWT)", Journal of Wind engineering and Industrial Aerodynamics, Vol. 107, pp. 57-75, 2012. [10] Ghatage, S. V. and Joshi, J. B. (2012)., ''Optimization of Vertical Axis Wind Turbine: CFD Simulations and Experimental Measurements'', The Canadian Journal of Chemical Engineering, Vol. 90, No. 5, pp. 1186-1201, 2012. [11] حسن‌زاده گروی، جابر، نصرت‌اللهی، مهران، محمودی، مصطفی، «بررسی عددی و تجربی تأثیر نسبت همپوشانی بر عملکرد توربین بادی خانگی»، مهندسی و مدیریت انرژی، ۱۳۹۴، جلد 5، شماره 1، صفحه ۴۴ـ۵۳. [12] Modi, V. J. and Fernando, M. S. U. K., ''On the performance of the Savonius wind turbine'', Journal of Solar Energy Engineering, Vol. 111, No. 1, pp. 71-81, 1989. [13] Kamoji, M. A., Kedare, S. B. and Prabhu, S. V., ''Experimental Investigations on Single Stage Modified Savonius Rotor'', Applied Energy Vol. 86, No. 7-8, pp. 1064-1073, 2009. [14] Irabu, K. and Roy, J. N., ''Characteristics of Wind Power on Savonius Rotor Using a Guide-Box Tunnel'', Experimental Thermal and Fluid Science, Vol. 32, No. 2, pp. 580-586, 2007. [15] El-Askary, W. A., Nasef, M. H., Abdel-Hamid, A. A. and Gad, H. E., ''Harvesting Wind Energy for Improving Performance of Savonius Rotor'', Journal of Wind Engineering and Industrial Aerodynamics, Vol. 139, pp. 8-15, 2015. [16] Mohamed, M. H., Janiga, G., Pap, E. and Thévenin, D., ''Optimization of Savonius Turbines Using an Obstacle Shielding The Returning Blade'', Renewable Energy, Vol. 35, No. 11, pp. 2618-2626, 2010. [17] Altan, B. D. and Atılgan, M., ''An Experimental and Numerical Study on The Improvement of the Performance of Savonius Wind rotor'', Energy Conversion and Management, Vol. 49, No. 12, pp. 3425-3432, 2008. [18] Goodarzi, M. and Keimanesh, R., ''Numerical Analysis on Overall Performance of Savonius Turbines Adjacent to a Natural Draft Cooling Tower'', Energy Conversion and Management, Vol. 99, pp. 41-49, 2015. [19] Shaheen, M., El-Sayed, M. and Abdallah, S., ''Numerical Study of Two-Bucket Savonius Wind Turbine Cluster'', Journal of Wind Engineering and Industrial Aerodynamics, Vol. 137, pp. 78-89, 2015. [20] Korprasertsak, N. and Leephakpreeda, T., ''CFD-Based Power Analysis on Low Speed Vertical Axis Wind Turbines with Wind Boosters'', Energy Procedia, Vol. 79, pp. 963-968, 2015. [21] Korprasertsak, N. and Leephakpreeda, T., ''Analysis and Optimal Design of Wind Boosters for Vertical Axis Wind Turbines at Low Wind Speed'', Journal of Wind Engineering and Industrial Aerodynamics, Vol. 159, pp. 9-18, 2016.