Dynamic Modeling of Grid Connected Photovoltaic Systems and Their Techno-Economic Assessment under Different Scenarios in Residential Sector of Several Large Cities of Iran

Author

Abstract

This research aims to model and study the techno-economic aspects of grid-connected distributed photovoltaic systems for use in the residential sector in several large cities of Iran including Esfahan, Bandar Abbas, Tehran, Tabriz, Shiraz, and Yazd. The dynamic modelling is performed using hourly metrological data and hourly electricity demand of the households. The impacts of pricing policies and governmental incentives on the economy of photovoltaic systems have been studied under six different scenarios. The results show that electricity production of a one-kilowatt system with fixed angles is in the range of 1437-1536 kWh from which only 44.1-49.4% can be sold to the electricity grid by applying net metering policy. Using 1-axis and 2-axes solar tracker, the electricity production and the sold electricity to the grid are increased by 26.8-44.4% and 35.6-62.8% respectively. Guaranteed purchase of excess electricity cannot make use of photovoltaic systems economically viable. Besides, by applying the incentive policies in supplying the initial costs of investment and increasing electricity tariffs, it is possible to reduce the payback period to about 6 years except for Bandar Abbas. The results show that according to the climate conditions, appropriate and specific incentive policies should be adopted by the government in each region.

Keywords


[1] International Energy Agancy, World: Electricity and Heat for 2014, www.iea.org/statistics/ [2] سازمان انرژی‌های تجدیدپذیر و بهره‌وری انرژی برق (ساتبا)، http://www.satba.gov.ir/br/sun/potential [3] سند چشم‌انداز جمهوری اسلامی ایران در افق 1404، https://rc.majlis.ir/fa/law/show/132295 [4] Obi, M. and Bass, R., "Trends and Challenges of Grid-Connected Photovoltaic Systems–A Review", Renewable and Sustainable Energy Reviews, Vol. 58, pp. 1082-1094, 2016. [5] Rachchh, R., Kumar, M. and Tripathi, B., "Solar Photovoltaic System Design Optimization by Shading Analysis to Maximize Energy Generation from Limited Urban Area", Energy Conversion and Management, Vol. 115, pp. 244-252, 2016. [6] Yilmaz, S., Binici, H. and Ozcalik, H. R., "Energy Supply in a Green School via a Photovoltaic-Thermal Power System", Renewable and Sustainable Energy Reviews, Vol. 57, pp. 713-720, 2016. [7] Wee, S., "The Effect of Residential Solar Photovoltaic Systems on Home Value: A Case Study of Hawai‘I", Renewable Energy, Vol. 91, pp.282-292, 2016. [8] Lau, K. Y., Muhamad, N. A., Arief, Y. Z., Tan, C. W. and Yatim, A. H. M., "Grid-Connected Photovoltaic Systems for Malaysian Residential Sector: Effects of Component Costs, Feed-In Tariffs, And Carbon Taxes", Energy, Vol. 102, pp. 65-82, 2016. [9] Mundada, A. S., Shah, K. K. and Pearce, J. M., "Levelized Cost of Electricity for Solar Photovoltaic, Battery and Cogen Hybrid Systems", Renewable and Sustainable Energy Reviews, Vol. 57, pp. 692-703, 2016. [10] Sesmero, J., Jung, J. and Tyner, W., "The Effect of Current and Prospective Policies on Photovoltaic System Economics: An Application to the US Midwest", Energy Policy, Vol. 93, pp. 80-95, 2016. [11] Lee, M., Hong, T. and Koo, C., "An Economic Impact Analysis of State Solar Incentives for Improving Financial Performance of Residential Solar Photovoltaic Systems in the United States", Renewable and Sustainable Energy Reviews, Vol. 58, pp. 590-607, 2016. [12] Bakhshi, R. and Sadeh, J., "A Comprehensive Economic Analysis Method for Selecting the PV Array Structure in Grid–Connected Photovoltaic Systems", Renewable Energy, Vol. 94, pp. 524-536, 2016. [13] مهدوی عادلی، محمدحسین، سلیمی‌فر، مصطفی، قزلباش، اعظم، «ارزیابی اقتصادی استفاده از انرژی برق خورشیدی (فتوولتائیک) و برق فسیلی در مصارف خانگی (مطالعۀ موردی مجتمع سه‌واحدی در شهرستان مشهد)»، مجله علمی‌پژوهشی سیاستگذاری اقتصادی، شمارۀ 11، صفحات 123ـ147، 1393. [14] Tam, V.W., Le, K.N., Zeng, S.X., Wang, X. and Illankoon, I.C.S., "Regenerative Practice of Using Photovoltaic Solar Systems for Residential Dwellings: An Empirical Study in Australia", Renewable and Sustainable Energy Reviews, Vol. 75, pp.1-10, 2017. [15] Vieira, F.M., Moura, P.S. and de Almeida, A.T., "Energy Storage System for Self-Consumption of Photovoltaic Energy in Residential Zero Energy Buildings", Renewable Energy, Vol. 103, pp.308-320, 2017. [16] Tervo, E., Agbim, K., DeAngelis, F., Hernandez, J., Kim, H.K. and Odukomaiya, A., "An Economic Analysis of Residential Photovoltaic Systems with Lithium Ion Battery Storage in the United States", Renewable and Sustainable Energy Reviews, Vol. 94, pp.1057-1066, 2018. [17] Fitriaty, P. and Shen, Z., "Predicting Energy Generation from Residential Building Attached Photovoltaic Cells in a Tropical Area Using 3D Modeling Analysis", Journal of Cleaner Production, Vol. 195, pp.1422-1436, 2018. [18] Sow, A., Mehrtash, M., Rousse, D.R. and Haillot, D., "Economic Analysis of Residential Solar Photovoltaic Electricity Production in Canada", Sustainable Energy Technologies and Assessments, Vol. 33, pp.83-94, 2019. [19] Coria, G., Penizzotto, F. and Pringles, R., "Economic Analysis of Photovoltaic Projects: The Argentinian Renewable Generation Policy for Residential Sectors", Renewable Energy, Vol. 133, pp.1167-1177, 2019. [20] Fikru, M.G., "Estimated Electricity Bill Savings for Residential Solar Photovoltaic System Owners: Are They Accurate Enough?", Applied Energy, Vol. 253, p.113501, 2019. [21] Liu, C., Xu, W., Li, A., Sun, D. and Huo, H., "Energy Balance Evaluation and Optimization of Photovoltaic Systems for Zero Energy Residential Buildings in Different Climate Zones of China", Journal of Cleaner Production, Vol. 235, pp.1202-1215, 2019. [22] Enongene, K.E., Abanda, F.H., Otene, I.J.J., Obi, S.I. and Okafor, C., "The Potential of Solar Photovoltaic Systems for Residential Homes in Lagos City of Nigeria", Journal of environmental management, Vol. 244, pp. 247-256, 2019. [23] Espinoza, R., Muñoz-Cerón, E., Aguilera, J. and de la Casa, J., "Feasibility Evaluation of Residential Photovoltaic Self-Consumption Projects in Peru", Renewable energy, Vol. 136, pp.414-427, 2019. [24] Mangiante, M.J., Whung, P.Y., Zhou, L., Porter, R., Cepada, A., Campirano Jr, E., Licon Jr, D., Lawrence, R. and Torres, M., "Economic and Technical Assessment of Rooftop Solar Photovoltaic Potential in Brownsville, Texas, USA", Computers, Environment and Urban Systems, Vol. 80, p.101450, 2020. [25] Martinopoulos, G., "Are Rooftop Photovoltaic Systems a Sustainable Solution for Europe? A Life Cycle Impact Assessment and Cost Analysis", Applied Energy, Vol. 257, p.114035, 2020. [26] Lan, H., Cheng, B., Gou, Z. and Yu, R., "An Evaluation of Feed-In Tariffs for Promoting Household Solar Energy Adoption in Southeast Queensland, Australia", Sustainable Cities and Society, Vol. 53, p.101942, 2020. [27] Gilman, P., "SAM Photovoltaic Model Technical Reference", National Renewable Energy Laboratory, pp. 1-63, 2015. [28] Brano, V.L., Orioli, A., Ciulla, G. and Di Gangi, A., "An Improved Five-Parameter Model for Photovoltaic Modules", Solar Energy Materials and Solar Cells, Vol. 94, No. 8, pp. 1358-1370, 2010. [29] National Renewable Energy Laboratory, System Advisor Model Version 2015.6.30 (SAM 2015.6.30), https://sam.nrel.gov/ [30] Daneshyar, M., "Solar Radiation Statistics for Iran", Solar Energy, Vol. 21, pp. 345-349, 1978. [31] Bhattacharyya, S. C., Energy Economics: Concepts, Issues, Markets and Governance, London, Springer Science & Business Media, 2011. [32] YL250P-29b Datasheet, www.yinglisolar.com [33] Weather Data by Region, https://energyplus.net/weatherregion/asia_wmo_region_2/IRN%20%20 [34] دفتر سرمایه‌گذاری و تنظیم مقررات، تعرفه‌های برق و شرایط عمومی آن‌ها، وزارت نیرو، تهران، 1398. [35] سازمان انرژی‌های تجدیدپذیر و بهره‌وری انرژی برق (ساتبا)، تعرفۀ خرید تضمینی برق از نیروگاه‌های تجدیدپذیر و پاک، وزارت نیرو، 1398. [36] شرکت توانیر، آمار تفصیلی صنعت برق ایران ویژۀ توزیع نیروی برق در سال 1394، وزارت نیرو، 1395.