Investigation of the Effect of Copper and Aluminiumoxide Nanoparticleson the Thermal Energy Storage Capability of Phase Change Material

Authors

Abstract

Solar energy is a desirable type of renewable energies. However, it should be stored due to the sun radiation discontinuity. Phase-change materials (PCMs) store the thermal energy through their phase transitions, and the optimization of their thermal properties leads to more efficient thermal storage. In this study, paraffin wax was used as a PCM and aluminum oxide, and copper nanoparticles were used to improve its thermal properties. The morphology of the nanocomposites was studied with Field Emission Scanning Electron Microscopy (FESEM). Experiments were conducted in a factorial arrangement in a completely randomized design with three main factors, including: the weight percentage of nanoparticles (three levels), the type of nanoparticles (two levels), and the size of the nanoparticles (three levels), and pure Paraffin wax as a control sample. The melting point and the latent heat of each sample were measured with differential scanning calorimetery (DSC). The results showed that by an increase in nanoparticles concentration, the melting point of nanocomposites decreased slightly. On the other hand, the type and size of nanoparticles had no significant effect on the melting point. The addition of nanoparticles increased the latent heat of nanocomposites noteworthy in an optimal concentration. With a decrease in the nanoparticles size, the latent heat of nanocomposites increased. The nanocomposite sample which was filled with copper nanoparticle at the concentration and size of 1% and 30 nm respectively, had the highest latent heat.

Keywords


[1] بنایی، محمدرضا، اژدرفاقی‌بناب، حسین، «ارائۀ یک مبدل غیر ایزولۀDC-DC با ضریب افزایندگی بالا برای کاربرد در انرژی خورشیدی» نشریه مهندسی و مدیریت انرژی، دوره هفتم، شماره اول، صفحه 14ـ29، 1396. [2] Demirbas, M. F., "Thermal Energy Storage and Phase Change Materials: an Overview", Energy Sources, Part B Econ. Planning, Policy, Vol. 1, No. 1, pp. 85–95, 2006. [3] Elgafy, A. and Lafdi, K., "Effect of Carbon Nanofiber Additives on Thermal Behavior of Phase Change Materials", Carbon N. Y., Vol. 43, No. 15, pp. 3067–3074, 2005. [4] Yu, W. and Xie, H., "A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications", J. Nanomater., Vol. 2012, p. 1, 2012. [5] Halté, V., Bigot, J-Y., Palpant, B., Broyer, M., Prével, B. and Pérez, A., "Size Dependence of the Energy Relaxation in Silver Nanoparticles Embedded in Dielectric Matrices", Appl. Phys. Lett., Vol. 75, No. 24, pp. 3799–3801, 1999. [6] Narayanan S. S. and et al., "Development of sunlight-driven eutectic phase change material nanocomposite for applications in solar water heating", Resour. Technol., Vol. 3, No. 3, pp. 272–279, 2017. [7] Tasnim, S. H., Hossain, R., Mahmud, S. and Dutta, A. "Convection effect on the melting process of nano-PCM inside porous enclosure", Int. J. Heat Mass Transf., Vol. 85, pp. 206–220, Jun. 2015. [8] Wang, J. Xie, H. and Xin, Z. "Thermal properties of paraffin based composites containing multi-walled carbon nanotubes", Thermochim. Acta, Vol. 488, No. 1–2, pp. 39–42, 2009. [9] Colla, L., Fedele, L., Mancin, S., Danza, L. and Manca, O., "Nano-PCMs for enhanced energy storage and passive cooling applications", Appl. Therm. Eng., Vol. 110, pp. 584–589, 2017. [10] Wu, S., Wang, H., Xiao, S. and Zhu, D., "Numerical simulation on thermal energy storage behavior of Cu/paraffin nanofluids PCMs", Procedia Eng., Vol. 31, pp. 240–244, 2012. [11] Li, M., "A nano-graphite / paraffin phase change material with high thermal conductivity", Appl. Energy, Vol. 106, pp. 25–30, 2013. [12] نظیفی‌فرد، محمد، عباسیان ‌آرانی، علی‌اکبر، کلباسی، محمدحسین، «بررسی فرایند ذوب و انجماد مادۀ تغییر فاز دهندۀ پارافین‌واکس در یک هندسۀ کروی»، سومین کنفرانس انتقال حرارت و جرم ایران، بابل، 1396. [13] Li, T., Lee, M., Wang, J.-H. R. and Kang, Y. T., "Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application", Int. J. Heat Mass Transf., Vol. 75, pp. 1–11, 2014. [14] Warzoha, R. J., Weigand, R. M. and Fleischer, A. S., "Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers", Appl. Energy, Vol. 137, pp. 716–725, 2015. [15] Yang, Y., Luo, J., Song, G., Liu, Y. and Tang, G., "The experimental exploration of nano-Si3N4/paraffin on thermal behavior of phase change materials", Thermochim. Acta, Vol. 597, pp. 101–106, 2014. [16] Motahar, S., Nikkam, N., Alemrajabi, A. A., Khodabandeh, R., Toprak, M. S. and Muhammed, M., "Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles", Int. Commun. Heat Mass Transf., Vol. 59, pp. 68–74, 2014. [17] Colla, L., Fedele, L., Mancin, S., Danza, L. and Manca, O., "Nano-PCMs for enhanced energy storage and passive cooling applications", Appl. Therm. Eng., Vol. 110, pp. 584–589, 2017. [18] OBITAYO, O. A., "Simulation and analysis of phase change materials for building temperature control", Univ. Strat. Glas. United Kingdom, 2011. [19] Sharma, A., Tyagi, V. V., Chen, C. R. and Buddhi, D., "Review on thermal energy storage with phase change materials and applications", Renew. Sustain. energy Rev., Vol. 13, No. 2, pp. 318–345, 2009. [20] Kousksou, T., El Rhafiki, T., Mahdaoui, M., Bruel, P. and Zeraouli, Y., "Crystallization of supercooled PCMs inside emulsions: DSC applications", Sol. Energy Mater. Sol. Cells, Vol. 107, pp. 28–36, 2012. [21] Watson, E. S., O’Neill, M. J., Justin, J. and Brenner, N., "A Differential Scanning Calorimeter for Quantitative Differential Thermal Analysis", Anal. Chem., Vol. 36, No. 7, pp. 1233–1238, Jun. 1964. [22] Lin S. C. and Al-Kayiem, H. H., "Evaluation of copper nanoparticles–Paraffin wax compositions for solar thermal energy storage", Sol. Energy, Vol. 132, pp. 267–278, 2016. [23] Nurten, Ş., Fois, M. and Paksoy, H., "Solar Energy Materials & Solar Cells Improving thermal conductivity phase change materials — A study of paraf fi n nanomagnetite composites", Vol. 137, pp. 61–67, 2015. [24] Yu, Z.-T. and et al., "Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes", Carbon N. Y., Vol. 53, pp. 277–285, 2013. [25] سازمان ملی استاندارد ایران، استاندارد شمارۀ 1-7186، گرماسنج روبشی تفاضلی، ایران، چاپ اول، 1394، صفحۀ 1ـ۴۷. [26] Şahan, N., Fois, M. and Paksoy, H., "Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites", Sol. Energy Mater. Sol. Cells, Vol. 137, pp. 61–67, 2015. [27] Shaikh, S., Lafdi, K. and Hallinan, K., "Carbon nanoadditives to enhance latent energy storage of phase change materials", J. Appl. Phys., Vol. 103, No. 9, p. 94302, 2008. [28] Li, M., "A nano-graphite/paraffin phase change material with high thermal conductivity", Appl. Energy, Vol. 106, pp. 25–30, 2013. [29] Nourani, M., Hamdami, N., Keramat, J., Moheb, A. and Shahedi, M., "Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity", Renew. Energy, Vol. 88, pp. 474–482, 2016. [30] Jiang, X., Luo, R., Peng, F., Fang, Y., Akiyama, T. and Wang, S., "Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3", Appl. Energy, Vol. 137, pp. 731–737, 2015. [31] Oya, T., Nomura, T., Tsubota, M., Okinaka, N. and Akiyama, T., "Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles", Appl. Therm. Eng., Vol. 61, No. 2, pp. 825–828, 2013. [32] Shi, J.-N. and et al., "Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives", Carbon N. Y., Vol. 51, pp. 365–372, 2013.