The Comparison of the Performance of Combined Ejector-Vapor Compression Cycles

Author

Abstract

In this paper, the performance of four prevalent combined ejector-vapor compression cycles are compared. A non-iterative algorithm for the analysis of ejector performance in critical operational mode has been used. Moreover, using flow parameters is proposed for estimating loss coefficient in the mixing process rather than using geometrical specification and operating conditions of the ejector. The effects of the operating conditions and refrigerant type on the coefficient of performance, thermal coefficient of performance, and ejector entrainment are investigated and analyzed. Results show that, at high condenser temperatures, the difference between coefficient of performance of combined cycle and conventional vapor compression cycle significantly decreases. Combined cycles which only utilize the waste heat of the condenser in the vapor compression sub-cycle have a lower coefficient of performance than those cycles using an external heat source and can be used in smaller rang of condenser and generator temperatures.

Keywords


عامل بر عملکرد سیستم تبرید اجکتوری»، نشریۀ مهندسی و مدیریت انرژی، دورۀ 3، شمارۀ 3، صفحه 52ـ۶۳، 1392. [2] غائبی، هادی، رستم‌زاده، هادی، عبادالهی، محمد، «تحلیل انرژی و اگزرژی سیستم جدید تولید همزمان سرمایش و توان با تلفیق سیکل رانکین آلی (ORC) و سیستم تبرید اجکتوری»، نشریۀ مهندسی و مدیریت انرژی، دورۀ 6، شمارۀ 2، صفحه 60ـ۷۳، 1395. [3] Besagni, G., Mereu, R. and Inzoli, F., "Ejector Refrigeration: A Comperhensive Review", Renewable and Sustainable Energy Reviews, Vol. 53, pp. 373-407, 2016. [4] Sun, D.W., "Evaluation of a Combined Ejector-Vapour Compression Refrigeration System", International Journal of Energy Research, Vol. 22, pp. 333-342, 1998. [5] Huang, B.J., Petrenko, V.A., Chang, J.M., Lin, C.P. and Hu S.S., "A Combined-Cycle Refrigeration System Using Ejector-Cooling Cycle as the Bottom Cycle", International Journal of Refrigeration, Vol. 24, pp. 391-399, 2001. [6] Hernandez, J.I., Dorantes, R.J., Best, R. and Estrada, C.A., "The Behaviour of a Hybride Compressor and Ejector Refrigeration System with Refrigerants 134a and 142b", Applied Thermal Engineering, Vol. 24, pp. 1765-1783, 2004. [7] Huang, B.J., Wu, J.H., Hsu, H.Y. and Wang, J.H., "Development of Hybrid Solar-Assisted Cooling/Heating System", Energy Conversion and Management, Vol. 51, pp. 1643-1650, 2010. [8] Petrenko, V.O., Huang, B.J. and Ierin, V.O., "Design-Theoretical Study of Cascade CO2 Sub-critical Mechanical Compression/Butane Ejector Cooling Cycle", Vol. 34, pp. 1649-1656, 2011. [9] Zhu, Y. and Jiang, P., "Hybride Vapor Compression Refrigeration System With an Integrated Ejector Cooling Cycle",International Journal of Refrigeration, Vol. 35, pp. 68-78, 2012. [10] Yan, J., Cai, W., Zhao, L. and Lin, C., "Performance Evaluation of a Combined Ejector-Vapor Compression Cycle", Renwable Energy, Vol. 55, pp. 331-337, 2013. [11] Chen, X., Worall, M., Omer, S., Su, Y. and Riffat, S., "Theoretical Studies of a Hybride Ejector CO2 Compression Cooling System for Vehicles and Preliminary Experimental Investigations of an Ejector Cycle", Applied Energy, Vol. 102, pp. 931-942, 2013. [12] Mansour, R.B., Ouzzane, M. and Aidoun, Z., "Numerical Evaluation of Ejector-Assisted Mechanical Compression System for Refrigeration Applications", International Journal of Refrigeration, Vol. 43, pp. 36-49, 2014. [13] Yan, J., Cai, W., Lin, C. and Li, Y., "Experimental Study on Performance of a Hybride Ejector-Vapor Compression Cycle", Energy Conversion and Management, Vol. 113, pp. 36-43, 2016. [14] Zhao, H., Zhang, K., Wang, L. and Han, J., "Thermodynamic Investigation of a Booster-Assisted Ejector Refrigeration System", Applied Thermal Engineering, Vol. 104, pp. 274-281, 2016. [15] Megdouli, K., Tashtoush, B.M., Nahdi, E., Elakhdar, M., Mhimid, A. and Kairouani, L., "Performance Analysis of a Combined Vapor Compression Cycle and Ejector Cycle for Refrigeration Cogeneration", International Journal of refrigeration, Vol. 74, pp. 517-527, 2017. [16] Chen, G., Volovyk, O., Zhu, D. and Ierin, V., "Theoretical Analysis and Optimization of a Hybrid CO2 Transcritical Mechanical Conpression-Ejector Cooling Cycle", International Journal of Refrigeration, Vol. 74, pp. 84-92, 2017. [17] Sanaye, S., Emadi, M.A. and Refahi, A., "Thermal and Economic Modeling and Optimization of a Novel Combined Ejector Refrigeration Cycle", International Journal of Refrigeration, Vol. 98, pp. 480-493, 2019. [18] Huang, B.J., Chang J.M. and Petrenko, V.A., "A 1-D Analysis of Ejector Performance", International Journal of Refrigeration, Vol. 22, No. 5, pp. 354-364, 1999. [19] White, F.M., Fluid Mechanics, Forth Edition, pp. 590-592, McGraw-Hill, 2003. [20] Besagni, G., Mereu, R., Leo, G.D. and Inzoli, F., "A Study of Working fluids for Heat Driven Ejector Refrigeration Using Lumped Parameter Model", International Journal of Refrigeration, Vol. 58, No. 1, pp. 154-171, 2015. [21] Liu, F., "Review on Ejector Efficiencies in Various Ejector", in The International Refrigeration and Air Conditioning, Purdue, USA, 2014. [22] Besagni, G., Mereu, R., Chiesa, P. and Inzoli, F., "An Integrated Lumped Parameter-CFD Approach for Off-Design Ejector Performance Evaluation", Energy Conversion and Management, Vol. 105, No. 15, pp.697-715, 2015. [23] Ablwaifa, A.E., A Theoretical and Experimental Investigation of Jet-Pump Refrigeration System, Ph.D. Thesis, University of Nottingham, Nottingham, 2006. [24] Hakkaki-Fard A., Aidoun Z., Ouzzane M., "A Computational Methodology for Ejector Design and Performance Maximisation", Energy Conversion and Management, Vol. 105, pp. 1291-1302, 2015. [25] Yapici, R., Erosy, H.K., Aktoprakoglu, A., Halkaci, H.S. and Yigit, O., "Experimental Determination of the Optimum Performance of Ejector Refrigeration System Depending on Ejector Area Ratio", International Journal of Refrigeration, Vol. 31, pp. 1183-1189, 2008. [26] Huang, B.J. and Chang, J.M., "Emprical Correlation for Ejector Design", International Journal of Refrigeration, Vol. 22, pp. 379-388, 1999.