Optimal Location of HTS-FCLs Considering Security, Stability, and Coordination of Overcurrent Relays and Intelligent Selection of Overcurrent Relay Characteristics in DFIG Connected Networks Using Differential Evolution Algorithm

Authors

Abstract

With the rapid growth of wind power plants, different types of these resources are connected to the network at different voltage levels. A number of these resources have DFIG. The development of distributed generation has made problems such as an increased level of short circuit and the loss of protective devices coordination. During the fault occurrence, transient stability may be lost due to drastic changes in speed, power, and rotor angel of synchronous and asynchronous generators. Based on the dependence of resistance and temperature, high-temperature superconducting fault current limiter could decrease the fault current. This paper, after studying the ability of HTSFCL to reduce the fault current and to increase the stability level in PSCAD/EMTDC software, for the first time proposes objective function of HTSFCL optimal location by simultaneously considering security and protection coordination indices, voltage, and transient stability of synchronous and asynchronous generators in the networks connected to DFIG. Optimal location and size of HTSFCL in IEEE 30-bus test network are determined using differential evolution (DE) algorithm in MATLAB while considering single- and multi-objective indices. Also, indices of security, coordination of overcurrent relays, voltage stability, and rotor angel stability are compared in six modes. The achieved results show the applicability of the proposed method.

Keywords


[1] برهمندپور، همایون، کمانکش، سیما، سلیمی، سعید، دانایی، حمید، محمد جعفریان، محمد، «نقش نیروگاه‌های بادی در پایداری گذرای شبکه»، بیست‌وهشتمین کنفرانس بین‌المللی برق، ایران، 1392. [2] Chaudhari, P.S. and KHampariya, P.K., "Reviwe of Superconducting Fault Current Limiters", Int. J. Curr. Trends. Eng. Technol., Vol. 2, No. 1, pp. 101-108, 2016. [3] Pishevar, M., Ahadiat, M. and Tafti, M.K., "Set-up and Location of the Fault Current Limiter in Power Systems by Fuzzy HFL Sorting Algorithm and Optimization PSO HIGA", 5th Int. Conf. Comput. Sci. Electr. Electron. Eng., 2016. [4] Roldan, J., Price, A., Rosa, F. and Moriconi, F., "Analysis of the Effect of a Saturable-Core HTS Fault Current Limiter on the Circuit Breaker Transient Recovery Voltage", IEEE Power Energy Soc. General Meet. , pp. 1-8, 2011. [5] Lambes, J., Hazelton, D. and Weber, C., "Recovery under Load Performance of 2nd Generation HTS Superconducting Fault Current Limiter for Electric Power Transmission Lines", IEEE Trans. Appl.Supercond. , Vol. 19, No. 3, pp. 1968-1971, 2009. [6] Khan, U., Seong, J., Lee, S., Lim, S. and Lee, B., "Feasibility Analysis of the Positioning of Superconducting Fault Current Limiters for the Smart Grid Application Using Simulink and SimPowerSystem", IEEE Trans. Appl. Supercond. , Vol. 21, No. 3, pp. 2165-2169, 2011. [7] Najy, W., Zeineldin, H. and Woon, W., "Optimal Protection Coordination for Micro Grids with Grid-Connected and Islanded Capability", IEEE Trans. Ind. Electron. , Vol. 60, No. 4, pp. 1668-1677, 2013. [8] Alaraifi, S. and ElMoursi, M., "Hybrid HTS_FCL Configuration with Adaptive Voltage Compensation Capability", IEEE Trans. Appl. Supercond. , Vol. 24, No. 6, 2014. [9] Didier, G., Leveque, J. and Rezzoug, A., "A Novel Approach to Determine the Optimal Location of SFCL in Electric Power Grid to Improve Power System Stability", IEEE Trans. Power Syst., Vol. 28, No. 2, pp. 978-984, 2013. [10] Zeineldin, H. and Xiao, W., "Optimal Fault Current Limiter Sizing for Distribution Systems with DG", IEEE Power Energy Soc. General Meet., pp. 1-5, 2011. [11] Hongesombut, K., Mitani, Y. and Tsuji, K., "Optimal Location Assignment and Design of Superconducting Fault Current Limiters Applied to Loop Power Systems", IEEE Trans. Appl. Supercond., Vol. 13, No. 2, pp. 1828-1831, 2003. [12] ElMoursi, M. and Hegazy, R., "Novel Technique for Reducing the High Fault Currents and Enhancing the Security of ADWEA Power System", IEEE Trans. Power Syst., Vol. 28, No. 1, pp. 140-148, 2013. [13] Lambes, J. C. H., "Fast Insertion Impedance of 2G HTS Superconductors for Megawatt AC and Repetitive Pulsed Power Operation", IEEE Trans. Dielectr. Electr. Insul, Vol. 18, No. 4, pp. 1334-1341, 2011. [14] Lambes, J. C. H., Hazelton, D., "Advantages of Second Generation High Temperature Superconductors for Pulsed Power Applications", IEEE Pulsed Power Conf., pp. 221-226, 2009. [15] Xie, Y., "Second-Generation HTS Conductor Designand Engineering for Electrical Power Applications", IEEE Trans. Appl. Supercond. , Vol. 19, No. 3, pp. 3009-3013, 2009. [16] Kim, H., Choi, H., Lim, H., Kim, I. and Hyun, O., "Resistance of Superconducting Fault Current Limiters Based on YBaCuO Thin Films after Quench Completion", Physica C: Supercond., Vol. 372-376, No. 3, pp. 1606-1609, 2002. [17] Ye, L., Juengst, K., "Modeling and Simulation of High Temperature Resistive Superconducting Fault Current Limiters", IEEE Trans. Appl.Supercond., Vol. 14, No. 2, 2004. [18] Chabanloo, R.M., Abyaneh, H.A., Kamangar, S.S.H. and Razavi, F., "Optimal Combined Overcurrent and Distance Relays Coordination Incorporating Intelligent Overcurrent Relays Characteristic Selection", IEEE Trans. Power Del. , Vol. 26, No. 3, pp. 1381-1391, 2011. [19] Jiang, L., Chen, X., Jin, J. and Liu, B., "Experiment of a MOSFETs-Based Bridge Type Fault Current Limiter Prototype", IEEE Int. Conf. Appl. Supercond. Electromagn. Dev. Beijing, China, 2013. [20] Bayati, N., Sadeghi, S.H.H. and Hosseini, A., "Optimal Placement and Sizing of Fault Current Limiters in Distributed Generation Systems Using a Hybrid Genetic Algorithm", Eng. Technol. App. Sci. Res., Vol. 7, No. 1, pp. 1329-1333, 2017. [21] Devi, A. and Kumar, J., "Simulation of Resistive Super Conducting Fault Current Limiter and its Performance Analysis in Three Phase Systems", Int. J. Eng. Res. Technol. , Vol. 2, No. 11, pp. 411-415, 2013. [22] Yadav, Y.Y., Matew, L. and Rajput, K.S., "Modeling and Simulation of Resistive Superconducting Fault Current Limiters", Int. J. Environ. Agric. Biotechnol., Vol. 1, No. 3, pp. 316-320, 2016. [23] Sung, B. and Park, J., "The Effect of SFCL on Electric Power Grid with Wind-Turbine Generation System", IEEE Trans. Appl. Supercond. , Vol. 20, No. 3, pp. 1177-1181, 2010. [24] Duron, J., Grilli, F., Dutoit, B. and Stavrev, S., "Modelling the E-J Relation of High-Tc Superconductors in an Arbitrary Current Range", Physicac: Supercond, Vol. 401, No. 1-4, pp. 231-235, 2004. [25] Hosseini, S.A., Abyaneh, H.A., Sadeghi, S.H.H. and Razavi, F., "Merging the Retrieval of the Protection Coordination of Distribution Networks Equipped with DGs in the Process of Their Siting and Sizing", Jour. Renewable Sustainable Energy, Vol. 8, No. 3, 2016 [26] Morandi, A., "2D Electromagnetic Modelling of Superconductors", Supercond.Sci. Technol., Vol. 25, No. 10, pp. 104003, 2012. [27] Alaraifi, S., ElMoursi, M. and Zeineldin, H., "Optimal Allocation of HTS-FCL for Power System Security and Stability Enhancement", IEEE Trans. Power Syst., Vol. 28, No. 4, pp. 4701-4711, 2013. [28] Yim, S., Kim, H., Hyun, O. and Sim, J., "Quench and Recovery Characteristics of Au/YBCO Thin Film Type SFCL", Physica C: Supercond, Vol. 463-465, pp. 1172-1175, 2007. [29] Farzinfar, M., Jazaeri, M. and Razavi, F., "A New Approach for Optimal Coordination of Distance and Directional over-Current Relays Using Multiple Embedded Crossover PSO", Int. J. Electr. Power Energy Syst., Vol. 61, pp. 620-628, 2014. [30] Zhang, X., Ruiz, H.S., Geng, J. et al. "Power Flow Analysis and Optimal Location of Resistive Type Superconducting Fault Current Limiters", Springer plus, Vol. 5, No.1, pp. 1972, 2016. [31] جلیلیان، امین، علیزاده پهلوانی، محمدرضا، «بهبود قابلیت گذر از خطای منابع تولید پراکنده مبتنی بر اینورتر با استفاده از محدودکنندۀ جریان خطا»، مهندسی و مدیریت انرژی، سال پنجم، شمارۀ ۱، صفحه 2ـ13، 1394.