Designing of an Industrial Thermoelectric Generator System on a City Gate Station’s Smokestack

Authors

Abstract

 City gate stations are installed at gas network entries to decrease pressure along gas transmission pipelines from 1000 psi to roughly 250 psi. Since Joul-Thomson constant of natural gas is positive, the aforementioned decrease in pressure also results in a decrease in the temperature, making the existing water vapor in the gas to condense or even to freeze during cold seasons. Hence, indirect heaters are employed to somewhat raise the gas temperature to eliminate the possibility of freezing. A major portion of the resulting heat from gas combustion is transferred to the environment through a smokestack. In the present study, the purpose is recovering this lost energy by modeling the smokestack and calculating the parameters of its passing smoke parameters. To this end, a thermoelectric generator was designed for installation on the smokestack in these stations. According to the findings, more than 400 kW of electrical power may be generated using 90 high-efficiency modules of type TEG1-241-1.4-1.2 installed on a smokestack of 3 spaces.

Keywords


]1[ جعفری، حوری، نرخ رشد مصرف انرژی در ایران، همایش تقدیر از برگزیدگان چهارمین دورۀ جایزۀ ملی مدیریت انرژی (18 دی) تهران: دانشگاه تهران ۱۳۹۷. ]2[ محمدی، میثم، مهرابیان، مظفرعلی، رئیسی، افراسیاب، بهبود بازده تبدیل انرژی حالت جامد با استفاده از نانوساختارهای ترموالکتریک، نشریه علمی‌پژوهشی مهندسی و مدیریت انرژی، سال هشتم، شمارۀ سوم، صفحه 70ـ81، ۱۳۹۷. [3] Bell, L. E., Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems, Science, Vol. 321, No. 5895, pp. 1457-1461, 2008. [4] Hong, S. J., and Chun, B. S., Microstructure and Thermoelectric Properties of Extruded n-Type 95% Bi 2 Te 2–5% Bi 2 Se 3 Alloy along Bar Length, Materials Science and Engineering: A, Vol. 356, No. 1, pp. 34, 2003. [5] Hyun, D., Hwang, J., Oh, T., Shim, J. D., and Kolomoets N., Electrical Properties of the 85% Bi2Te3-15% Bi2Se3 Thermoelectric Material Doped with SbI3 and CuBr, Journal of Physics and Chemistry of Solids, Vol. 59, No. 6-7, pp. 1039-1044, 1998. [6] Tang, X., Xie, W., Li, H., Zhao ,W., Zhang, Q., and Niino, M., Preparation and Thermoelectric Transport Properties of High-Performance p-Type Bi2Te3 with Layered Nanostructure, Applied physics letters, Vol. 90, No. 1, pp. 12102, 2007. [7] Ikoma, K., Munekiyo, M., Furuya , K., Kobayashi, M., Izumi, T., and Shinohara, K. Thermoelectric Module and Generator for Gasoline Engine Vehicles, in Proceeding of, IEEE, pp. 464-467, 1998. [8] Yazawa, K., Koh, Y. R., and Shakouri, A. Optimization of Thermoelectric Topping Combined Steam Turbine Cycles for Energy Economy, Applied Energy, Vol. 109, pp. 1-9, 2013. [9] Remeli, M. F., Tan, L., Date, A., Singh, B., and Akbarzadeh, A., Simultaneous Power Generation and Heat Recovery Using a Heat Pipe Assisted Thermoelectric Generator System, Energy Conversion and Management, Vol. 91, pp. 110-119, 2015. [10] Park, J. D., Lee, H., and Bond, M., Uninterrupted Thermoelectric Energy Harvesting Using Temperature-Sensor-Based Maximum Power Point Tracking System, Energy Conversion and Management, Vol. 86, pp. 233-240, 2014. [11] Su, C., Wang, W., Liu, X., and Deng, Y., Simulation and Experimental Study on Thermal Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators, Case Studies in Thermal Engineering, Vol. 4, pp. 85-91, 2014. [12] Arnguren, P., Araiz, M., Astrain, D., and Martinez, A., Thermoelectric Generator for Waste Heat Harvesting: a Computational and Experimental Approach, Energy Convers. Manage. Vol. 148, pp. 680-691, 2017. [13] Lv, S., He, W., Jiang, Q., Hu, Z., Liu X., and Chen, H., Study of Different Heat Exchange Technologies Influence on the Performance of Thermoelectric Generators, Energy convers. Manage. Vol. 156, pp. 167-177, 2018. [14] Hassan, J., Khaled, M., and Lemenad, T, Effect of Generator Load on Hybrid Heat Recovery System, Case Studies in Thermal Engineering, vol. 13, 2019. [15] Bergman, T. L., Incropera, F. P., DeWitt, D. P., and Lavine, A. S., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 2011. [16] Angrist, S. W., Direct Energy Conversion, 1976. [17] Prstic, S., Iyengar, M., and Cohen, A., Bypass Effect in High Performance Heat Sinks, in Proceeding of, Begel House Inc., pp. 34-37, 2000. [18] He, W., Zhang,G., Li, G., and Ji, J., Analysis and Discussion on the Impact of Non-Uniform Input Heat Flux on Thermoelectric Generator Array, Energy Conversion and Management, Vol. 98, pp. 268-274, 2015. [19] Li, G., and You, S., New Multi-Function Integrated Ventilation and Air Conditioning System for City Rail Transit, in Proceeding of, IEEE, pp. 6112-6115, 2011. [20] Mohajerani, S., Sokht Anamdani, R., Mohtashami, M., and Ebrahimi, M., Investigation the Effects of Cultivation Season and Genotypes on Some of Agronomic Parameters of Rape Plant with Delayed Cultivation in Arak Climate Condition (Markazi province), Cumhuriyet Science Journal, Vol. 36, No. 3, pp. 621-635, 2015. [21] Peacock, R. D., Jones, W., Reneke, P., and Forney, G., CFAST-Consolidated Model of Fire Growth and Smoke Transport (version 6) user's guide: Citeseer, 2013.