Performance Improvement of Evaporative Cooler Equipped with a Permanent Magnet Brushless Motor Using Power Control Method

Authors

Abstract

Evaporative coolers, as one of the least efficient and commonly used electrical power consumers, are used in different areas in Iran. Recent government agencies have focused on the improvement of this consumer by modifying motor designs or the replacement of the single-phase induction motors with higher-efficiency motors, such as brushless motors. The control method of brushless motor, used in this application, is often based on the speed control which is constant (for example, two speeds high and low). However, laboratory tests show that due to special characteristics of the cooler’s fan, the amount of air flow rate is not related to the fan speed alone. Commercial evaporative coolers are designed for a certain length of the channel that is able to deliver its nominal flow. Increasing the length of channel by the owner can reduce the airflow rate and practically, despite the paid cost, no good airflow rate can be achieved. To remedy this problem, a new approach is proposed in this paper to stabilize airflow rate. For this purpose, the motor, instead of using the constant speed control approach, is controlled in a constant power approach. The details of the requirement’s design, the application of brushless motor in the evaporative cooler, as well as the results of the test of a 0.5 hp (horse power) brushless motor using the dynamometer are presented.  The results are compared with the results of a typical single-phase induction motor test. Afterwards, a 5000 m3/h evaporative cooler, equipped with brushless motor, is tested in the reference laboratory under airflow test. The test is carried out both in a constant-speed and in constant-power control approaches. The achieved results indicate the absolute superiority of brushless motor over single-phase induction motors;also the constant power control method has a better performance in comparison with a constant speed method.

Keywords


[1] Sojdei, F., Eslami, M., Sayfi, N., "Potentials of Energy Conservation in the Industry Sector of Iran", ECEEE Industrial Summer Study Proceedings, pp. 323-330, 2014. [2] صادق‌زاده، سید محمد، زارع، مهدی، اکبری، حشمت‌الله، «ارزیابی فنی‌ـ اقتصادی راهکارهای بهینه‌سازی مصرف انرژی در الکتروموتورهای سه‌فاز بخش صنعت کشور»، پنجمین همایش ملی انرژی، صفحۀ 1ـ9، 1384. [3] Ferreira, J.T.E., Almeida, T.D., "Overview on Energy Saving Opportunities in Electric Motor Driven Systems - Part 1 System Efficiency Improvement", IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conference (I&CPS), pp. 1-8, 2016. [4] Binder, A., "Potentials for Energy Saving with Modern Drive Technology – a Survey", International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 90-95, 2008. [5] Kulatunga, A., Persson, E., Sundararajan, R., "Energy Saving Potential and Characteristics of Motors for Consumer Applications", Electrical Insulation Conference and Electrical Manufacturing Expo, pp. 103-108, 2007. [6] «نسل جدید موتورهای الکتریکی پربازده»، پایگاه اطلاع‌رسانی انرژی امروز، https://www.iranenergy.news/news/89066/960928 [7] Heydari, H., Bathaee, S.M.T., Fereidunian, A., Heydari, E., Nazarzadeh, A., "Energy Saving Conception of Smart Grid Focusing on Air-Conditioning Energy Management System", Smart Grid Conference (SGC), pp. 138-142, 2013. [8] Pullaguram, D., Mishra, S., Banerjee, S., "Standalone BLDC Based Solar Air Cooler with MPPT Tracking for Improved Efficiency", IEEE 7th Power India International Conference (PIICON), pp. 1-5, 2016. [9] Kamalakannan, D., Mariappan, V., Narayanan, V., Ramanathan, N. S., "Energy Efficient Appliances in a Residential Building", International Conference on Sustainable Green Buildings and Communities (SGBC), pp. 1-6, 2016. [10] Jiang, C., Habetler, T.G., Cao, W.P., "Improved condition Monitoring of the Faulty Blower Wheel Driven by Brushless DC Motor in Air Handler Unit (AHU)", IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1-5, 2016. [11] Krishnan, A.A., Ajith, P.R., Ashwin, K., Deepak, S., Pillai, N.S., "Sensorless Operation of Brushless DC Motor Drive Designed for Air Conditioners", International Conference on Innovations in Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT), pp. 71-74, 2017. [12] Singh, B., Bist, V., "Improved Power Quality Bridgeless Cuk Converter Fed Brushless DC Motor Drive for Air Conditioning System", IET Power Electronics, Vol. 5, No. 6, pp. 902-913, 2013. [13] Singh, S., Singh, B., "A Voltage-Controlled PFC Cuk Converter-Based PMBLDCM Drive for Air-Conditioners", IEEE Trans. on Industry Applications, Vol. 48, No. 2, pp. 832-838, 2012. [14] استاندارد ملی، «ماشین‌های الکتریکی گردان- معیارها و مشخصات فنی مصرف انرژی و دستورالعمل برچسب انرژی موتورهای جریان مستقیم بدون جاروبک»، شمارۀ 3-1-30-3772، 1396. [15] استاندارد ملی، «وسایل برقی خانگی و مشابه ـ ایمنی ـ قسمت 1: الزامات عمومی»، شمارۀ 1-1562، 1389. [16] حلوایی نیاسر، ابوالفضل، «مروری بر روش‌های تحلیل، کنترل، پیاده‌سازی و ارزیابی درایوهای موتورهای DC بدون جاروبک»، مجله علمی‌پژوهشی مهندسی و مدیریت انرژی، دانشگاه کاشان، دورۀ 5، شمارۀ 2، صفحۀ 24ـ41، تابستان 1394. [17] حلوایی نیاسر، ابوالفضل، فرجی، علیرضا، «کنترل بدون حسگر موتور بدون جاروبک آهن‌ربا دائم غیرسینوسی بر مبنای روش حذف هارمونیک گشتاور انتخابی و با استفاده از روئیتگر مود لغزشی مرتبۀ کامل»، مجله علمی‌پژوهشی مهندسی برق، دانشگاه تبریز، دورۀ 47، شمارۀ 1، صفحۀ 55ـ68، بهار 1396. [18] Available online: Toturial: Pumps and Fans (Energy Engineering), http://what-when-how.com/energy-engineering/ pumps-and-fans-energy-engineering/ [19] Lee, K., Rugge, R., Zheng, K., Yang, B., "Energy Saving HVAC System Modeling and Closed Loop Control in Industrial and Commercial Adjustable Speed Drives", IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1286-1292, 2014. [20] Available online: Unit Operations in Food Processing, Chapter 4; Fluid-Flow Applications, Pumps and Fans, http://www. nzifst.org.nz /unitoperations/flflapps3.htm [21] Ghafouri, J., Khayatzadeh, F., Khayatzadeh, A., "Dynamic Modeling of Variable Speed Centrifugal Pump Utilizing MATLAB / SIMULINK", International Journal of Science and Engineering Investigations, Vol. 1, No. 5, pp. 1-7, June 2012. [22] ASHRAE, "Standard 133-2015 -- Method of Testing Direct Evaporative Air Coolers", (ANSI Approved), 2015.