Experimental Investigation on CuO/Water Nanofluid Effect on the Heat Transfer Rate of Heat Pipe Network

Authors

Abstract

In this study, a new configuration of heat pipes as Heat Pipe Network is introduced. Here, the heat pipe network is designed, constructed, and put under the performance assessment. This heat pipe network consists of 4 vertical heat pipes connected to evaporator collector from bottom and condenser collector from top. In order to investigate the effect of nano-fluids on the thermal efficiency and thermal resistance of heat pipes network, copper oxide nano-fluids were prepared using a two-step method. Heat pipe network with 50% filling ratio water and copper oxide nano-fluid as working fluid was tested under different heat loads. It is found that the total resistance of heat pipe network using copper oxide nano-fluid with volumetric concentrations of 1%, 3%, and 5% --mixed with water as working fluid-- is reduced to 0.95, 0.84, and 0.75, respectively in comparison with dionized water. Moreover, for 5% volumetric concentration of nano-fluid, thermal efficiency exceed to 80%.

Keywords


[1] Gaugler, R.S., US Patent 2350348. Appl. 21 Dec, Published 6 June 1944. [2] Grover, G.M., US Patent 3229759. Filed 1963. [3] Grover, G.M., Cotter, T.P., and Erickson, G.F., "Structures of Very High Thermal Conductance", J. App. Phys. Vol. 35, pp. 1990, 1964. [4] Reay, D.A., Kew, P.A., Heat Pipes, Fifth Edition 2006. [5] Roberts, C.C., "A Review of Heat Pipe Liquid Delivery Concepts. Advances in Heat Pipe Technolog", Proceedings of IV International Heat Pipe Conference. Pergamon Press, Oxford, 1981. [6] Reay, D.A., Microfluidics Overview, Paper presented at Microfluidics Seminar, East Midlands Airport, UK, TUV-NEL, East Kilbride, April 2005. [7] Jeyadevan, B., Koganezawa, H., Nakatsuka, K., "Performance Evaluation of Citric Ion-Stabilised Magnetic Fluid Heat Pipe", J. Magnetism and Magn. Mater, Vol. 289, pp. 253–256, 2005. [8] Maydanik, Yu.F., "Loop heat pipes", Review article, Appl. Therm. Eng. Vol. 25, pp. 635–657, 2005. [9] Twidell, J., Weir, T., Renewable Energy Resources Second edition, 2006. [10] Jaisankar, S., Radhakrishnan, T.K., Sheeba, K.N., "Experimental Studies on Heat Transfer and Friction Factor Characteristics of Thermosyphon Solar Water Heater System Fitted with Spacer at the Trailing Edge of Twisted Tapes", Applied Thermal Engineering, Vol. 29, pp. 1224–1231, 2009. [11] Alogirou, S., "The potential of Solar Industrial Process Heat Applications", Appl Energy, Vol. 76, pp. 337-61, 2003. [12] Speyer, E., "Solar Energy Collection with Evacuated Tubes", Trans. ASME J. Eng. Power, Vol. 87, pp. 270–277, 1965. [13] Daghigh, R., Shafieian, A., "Theoretical and Experimental Analysis of Thermal Performance of a Solar Water Heating System with Evacuated Tube Heat Pipe Collector", Applied Thermal Engineering, Vol. 103, pp. 1219–1227, 2016. [14] Brunold, S., Frey, R., Frei, U., A Comparison of Three Different Collectors for Process Heat Applications, in: Solarenergie Prufund Forschungsstelle Ingenieurschule ITR, 2007. [15] Zhang, Zhuomin M, Nano/Microscale Heat Transfer, McGraw-Hill, New York, 2007. [16] شیخ‌زاده، قنبرعلی، اربابان، مریم، «جابه‌جایی طبیعی نانوسیال آب‌ـ مس بین دو استوانۀ هم‌محور افقی با وجود شش پرۀ شعاعی روی استوانه داخلی»، مهندسی و مدیریت انرژی، شمارۀ ۲، جلد 2، صفحۀ ۵۲ـ۶۱، 1391. [17] شیخ‌زاده، قنبرعلی، نظیفی‌فرد، محمد، مداحیان، رضا، کاظمی، خدیجه، «بررسی تغییرات هیدرودینامیکی-حرارتی یک نانوسیال در یک لولۀ مجهز به نوار پیچشی»، مهندسی و مدیریت انرژی، شمارۀ ۸، جلد ۴، صفحۀ ۸۶ـ۹۹، 1397. [18] Choi, S.U.S., Eastman, J.A., "Enhancing Thermal Conductivity of Fluids with Nanoparticles", FED-231/MD 66, ASME, New York, pp. 99–103, 1995. [19] Xinwei, Wang, Xianfan, Xu. Stephen, U.S.Choi., "Thermal Conductivity of Nanoparticle–Fluid Mixture", Journal of Thermophysics and Heat Transfer, Vol.13, pp. 474–480, 1999. [20] Liu, M.S., Ching-Cheng Lin, M., Huang, I.T., Wang, C.C., "Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluids", International Communications in Heat and Mass Transfer, Vol. 32, pp. 1202–1210, 2015. [21] Liu, M.S., Lin, M.C.C., Huang, I.T., Wang, C.C., "Enhancement of Thermal Conductivity with Cuo for Nanofluids", Chemical Engineering and Technology, Vol. 29, pp. 72–77, 2006. [22] Jana, S., Salehi-Khojin, A., Zhong, W.H., "Enhancement of Fluid Thermal Conductivity by the Addition of Single and Hybrid Nano-Additives", Thermochimica Acta Vol. 462, pp. 45–55, 2007. [23] Hwang, Y., Park, H.S., Lee, J.K., Jung, W.H., "Thermal Conductivity and Lubrication Characteristics of Nanofluids", Current Applied Physics 6 (Supplement 1) pp. e67–e71, 2006. [24] Kumar Das, S., Putra, N. Thiesen, P. Roetzel, W., "Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids", Journal of Heat Transfer, Vol. 125, pp. 567-574, 2003. [25] Natarajan, E., Sathish, R., "Role of Nanofluids in Solar Water Heater", Int J Adv Manuf Technol DOI 10.1007/s00170-008-1876-8. [26] Huminic, G., Huminic, A., Morjan, I., Dumitrache, F., "Experimental Study of the Thermal Performance of Thermosyphon Heat Pipe Using Iron Oxide Nanoparticles", International Journal of Heat and Mass Transfer, Vol. 54, pp. 656–661, 2011. [27] Brennan, P.J., Kroliczek E.J., Heat Pipe Design Handbook, Vol. 1, 1979. [28] فرانک پی. اینکروپرا، دیوید پی. دویت، مقدمه‌ای بر انتقال گرما، ترجمۀ بهرام پوستی، تهران: نشر کتاب دانشگاهی، 1382. [29] Tanner, D.W., Pope, D., Potter, C. J., West, D., Int. J. Heat Mass Transfer, 11, 181, 1968. [30] Rose, J.W., Proc. Instn. Mech. Engrs. A: Power and Energy, 216, 115, 2001. [31] Griffith, P., in Hewitt, G.F., Exec. Ed., Heat Exchanger Design Handbook, Section 2.6.5, Hemisphere Publishing, New York, 1990. [32] Dhinesh K.D., ValanA. A.," A Review on Preparation, Properties and Appliations of Nanofluids", Renewable and Sustainable Energy Reviews, Vol. 60, pp. 21–40, 2016. [33] Yimin, X., Qiang, L., "Heat Transfer Enhancement of Nanofuids", International Journal of Heat and Fluid Flow Vol. 21, pp. 58-64, 2000. [34] Patel, H.E., Das, S.K., Sundararagan, T., Nair, A.S., Geoge, B., Pradeep, T., "Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects", Journal of Applied Physics Letters, Vol.83, No. 14, pp. 2931–2933, 2003. [35] Li.Y. Zhou, J., Tung, S., Schneider, E., Xi, S., "A review on development of nanofluid preparation and characterization", Journal of Powder Technology, Vol. 196, No. 2, pp. 89-101, 2009.