[1] MacKay, D. J. C., "Bayesian Interpolation. Neural Computation", Vol. 4, pp. 415-447, 1992.
[2] Neal, R. M., "Bayesian Training of Backpropagation Networks by The Hybrid Monte Carlo Method", Citeseer 1992.
[3] Govindaraju, R. S. and Rao, A. R., "Artificial Neural Networks in Hydrology", Vol. 36: Springer Science & Business Media, 2013.
[4] Guha, N., Wu, X., Efendiev, Y., Jin, B., and Mallick, B. K., "A Variational Bayesian Approach for Iinverse Problems with Skew-t Error Distributions", Journal of Computational Physics, Vol. 301, pp. 377-393, 2015.
[5] Shin, D. W. and Hwang, E., "Stationary Bootstrapping for Cointegrating Regressions", Statistics & Probability Letters, Vol. 83, pp. 474-480, 2013.
[6] کاظمی، احد، «سیستمهای قدرت الکتریکی جلد اول و دوم»، انتشارات دانشگاه علم و صنعت ایران، 1389.
[7] Rukšenaitea, J. and Vaitkusb, P., "Prediction of Composite Indicators Using Combined Method of Extreme Learning Machine and Locally Weighted Regression", Nonlinear Analysis, Vol. 17, pp. 238-251, 2012.
[8] MacKay, D. J., "Probable Networks and Plausible Predictions—a Review of Practical Bayesian Methods for Supervised Neural Networks", Network: Computation in Neural Systems, Vol. 6, pp. 469-505, 1995.
[9] MacKay, D. J., "A Practical Bayesian Framework for Backpropagation Networks", Neural computation, Vol. 4, pp. 448-472, 1992.
[10] Bates, B. C. and Campbell, E. P., "A Markov Chain Monte Carlo Scheme for Parameter Estimation and Inference in Conceptual Rainfall‐Runoff Modeling", Water Resources Research, Vol. 37, pp. 937-947, 2001.
[11] Lau, H. C., Ho, G. T., and Zhao, Y., "A Demand Forecast Model Using a Combination of Surrogate Data Analysis and Optimal Neural Network Approach", Decision Support Systems, Vol. 54, pp. 1404-1416, 2013.
[12] Stewart, W. E., Caracotsios, M., and Sørensen, J. P., "Parameter Estimation from Multiresponse Data", AIChE Journal, Vol. 38, pp. 641-650, 1992.
[13] Banerjee, S., Carlin, B. P., and E., A., "Gelfand, Hierarchical Modeling and Analysis for Spatial Data", Crc Press, 2014.
[14] Kazemi, A., Rezaeipour, R., and Lashkarara, A., "Optimal Location of Rotary Hybrid Flow Controller (RHFC) Through Multi-Objective Mathematical Programming", Scientia Iranica, Vol. 19, pp. 1771-1779, 2012.
[15] Núñez, J. J. J., "Particle Swarm Optimization Applications in Power System Engineering", University of Puerto Rico, Mayagüez Campus, 2004.
[16] Rezaeipour, R., Kazemi, A., and Tayebi, M., "Operational Comparison of A New FACTS Controller (RHFC) With Other FACTS Devices Considering Modified Steady-State Model", Przeglad Elektrotechniczny, Vol. 88, pp. 54-58, 2012.
[17] Power systems test case archive,http://www.ee.washington.edu.research.pstca[accessed: 21.01.2015].
[18] Sabri, M., and Rezaeipour, R., "Improvement Estimation Power Flow Using Bayesian Neural Network", International Journal of Information Technology and Electrical Engineering, Vol 4, pp. 32-40, April 2015.
[19] Manitsas, E., et al., "Distribution System State Estimation Using An Artificial Neural Network Approach for Pseudo Measurement Modeling", IEEE Transactions on Power Systems, Vol. 4, pp. 1888-1896, 2012.
[20] Ashraf, M., et al., "Voltage Stability Monitoring of Power Systems Using Reduced Network and Artificial Neural Network", International Journal of Electrical Power & Energy Systems, Vol. 87, pp.43-51, 2017.
[21] Lashkar Ara, A., Kazemi, A., and Nabavi Niaki, S.A., "Modelling of Optimal Unified Power Flow Controller (OUPFC) for Optimal Steady-State Performance of Power Systems", Energy Conversion and Management, Vol. 52, pp. 1325–1333, 2011.