Advanced Exergy Analysis of Cogeneration System Based on Gas Turbine and Organic Rankine Cycle

Authors

Abstract

The present work is an attempt to investigate the advanced exergy analysis of cogeneration power plant based on gas turbines and ORC. To this end, the ORC, with internal heat exchanger and R123 as working fluid, is coupled to GT cycle by means of Heat Recovery Steam Generator. Comparing the results of cogeneration based on GT with those of cogeneration based on GT-ORC shows that the magnitude of net power has increased from 30MW to 30.73 MW. Also, the maximum endogenous exergy destruction in the GT-ORC based cogeneration system has occurred in the combustion chamber, HRSG and GT, respectively. The HRSG is the next component to combustion chamber which has improved in the conventional exergy analysis, while the air pre-heater is the second component which improves in the advanced exergy analysis.

Keywords


[1] Moriarty, P., Honnery, D., "What Energy Levels Can the Earth Sustain", Energy policy, Vol. 37, pp. 2469-2474, 2009. [2] International Energy Agency (I. E. A.), "Key World Energy Statistics", 2009. [3] Sims, R., "Renewable Energy: a Response to Climate Change", solar energy, Vol. 76, pp. 9-17, 2004. [4] Valero, A., Lozano, M. A., Serra, L., "CGAM Problem: Definition and Conventional Solution", energy, Vol. 19, pp. 279-286, 1994. [5] Doek Oh, S., Pang, H.S., Kim, S.M., Kwak, H.Y., "Exergy Analysis for a Gas Turbine Cogeneration System", ASME Transactions journal of engineering for gas turbine and power, Vol. 118, pp. 782-792, 1996. [6] Havelsky, V., "Energetic Efficiency of Cogeneration Systems for Combined Heat, Cold and Power Production", International Journal of Refrigeration, Vol. 22, pp. 479-485, 1999. [7] Khaliq A., Kaushik, S., "Thermodynamic Performance Evaluation of Combustion Gas Turbine Cogeneration System with Reheat", Applied Thermal Engineering, Vol. 24, pp. 1785–1795, 2004. [8] Hinnells, M., "Combined Heat and Power in Industry and Buildings", Energy Policy, Vol. 36, pp. 4522–4526, 2008. [9] Wang, J., Dai, Y., Gao, L., "Exergy Analyses and Parametric Optimizations for Different Cogeneration Power Plants in Cement Industry", Applied Energy, Vol. 86, pp. 941–948, 2009. [10] Dai, Y., Wang, J., Gao, L., "Parametric Optimization and Comparative Study of Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery", Energy Conversion and Management, Vol. 50, pp. 576–582, 2009. [11] Yari, M., "Exergetic Analysis of Various Types of Geothermal Power Plants", Renewable Energy, Vol. 35, pp. 112–121, 2010. [12] Tsatsaronis, G., Park, M.H., "On Avoidable and Unavoidable Exergy Destructions and Investment Costs in Thermal Systems", Energy Conversion and Management, Vol. 43, pp. 1259–1270, 2002. [13] Morosuk, T., Tsatsaronis, G., "A New Approach to the Exergy Analysis of Absorption Refrigeration Machines", Energy, Vol. 33, pp. 890–907, 2008. [14] Kelly, S., "Energy Systems Improvement based on Endogenous and Exogenous Exergy Destruction. PhD thesis", 2008. [15] kelly, S., Tsatsaronis , G., Morosuk, T., "Advanced Exergetic Analysis: Approaches for Splitting the Exergy Destruction into Endogenous and Exogenous Parts", Energy, Vol. 34, pp. 384–391, 2009. [16] Morosuk, T., Tsatsaronis, G., "Advanced Exergy Analysis for Chemically Reacting Systems - Application to a Simple Open Gas-turbine System", Int. J. of Thermodynamics, Vol. 12, No. 3, pp. 105-111, 2009. [17] Tsatsaronis, G., Morosuk, T., "Advanced Exergetic Analysis of a Novel System for Generating Electricity and Vaporizing Liquefied Natural Gas", energy, Vol. 35, pp. 820–829, 2010. [18] Petrakopoulou, F., Tsatsaronis, G., Morosuk, T., Carassai, A., "Conventional and Advanced Exergetic Analyses Applied to a Combined Cycle Power Plant", Energy, Vol. 41, pp. 146-152, 2012. [19] Wang, L., Yang, Y., Morosuk, T., Tsatsaronis, G., "Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant", Energies, Vol. 5, pp. 1850-1863, 2012. [20] Hepbasli, A., Kecebas, A., "A Comparative Study on Conventional and Advanced Exergetic Analyses of Geothermal District Heating Systems based on Actual Operational Data", Energy and Buildings, Vol. 61, pp. 193–201, 2013. [21] Morosuk, T., Tsatsaronis, G., Schult, M., "Conventional and Advanced Exergetic Analyses: Theory and Application", Arab J Sci Eng, Vol. 38, pp. 395–404, 2013. [22] Acikkalp, E., Aras, H., Hepbasli, A., "Advanced Exergy Analysis of a Trigeneration System with a Diesel–gas Engine Operating in a Refrigerator Plant Building", Energy and Buildings, Vol. 80, pp. 268–275, 2014. [23] Colorado, D., "Advanced Exergy Analysis Applied to a Single-stage Heat Transformer", Applied Thermal Engineering, Vol. 116, pp. 584-596, 2017. [24] Voloshchuk, V.A., "Advanced Exergetic Analysis of a Heat Pump Providing Space Heating in Built Environment", ENERGETIKA. Vol. 63. No. 3. pp. 83–92, 2017. [25] Bejan, A., Tsatsaronis, G., Moran, M., "Thermal Design and Optimization", New York: John Wiley, 1996. [26] اشرفی، هادی، سیدولیلو، میرهاتف، رنجبر، سید فرامرز، «تحلیل انرژی-اگزرژی و مطالعۀ پارامتری بازیابی گرمای اتلافی پیکربندی‌های مختلف سیکل توربین گاز با استفاده از سیکل رانکین آلی»، مهندسی و مدیریت انرژی، دورۀ ۵، شمارۀ ۲، صفحۀ ۶۲ـ۷۷، ۱۳۹۴. [27] حسینعلی‌پور، سید مصطفی، شهریاری، غلامرضا، ازهاری، پویان، مهرپناهی، عبدالله، «آنالیز اگزرژی و انرژی تغییر رژیم سوخت در یک نیروگاه سیکل ترکیبی»، مهندسی و مدیریت انرژی، دورۀ ۵، شمارۀ ۱، صفحۀ ۳۲-۴۳، ۱۳۹۴.