Simulation and exergy-economic optimization of a trigeneration system

Authors

Abstract

In this study, a combination of micro gas turbine, absorption cooling, and organic rankine cycle is selected. The system is modeled applying the laws of thermodynamic, and based on this model, exergy and economic analyses are performed for each component of the system. Four design variables, namely compressor pressure ratio, turbine inlet temperature, turbine efficiency, and compressor efficiency are considered to evaluate the system performance. Two models  have been used and compared to assess the effect of chemical exergy on irreversibility of absorption cycle once regardless of chemical exergy effect and then with the consideration of chemical exergy effect on the system analysis. Exergy efficiency and total cost rate are considered as two objective functions of the tri-generation system. Based on these findings, the exergy efficiency, by promoting micro gas turbine cycle to a tri-generation system, increases from 31% up to 38.6%. The findings, based on Pareto front, indicate that exergy efficiency can be increased up to 52%, and the total cost rate can be reduced to 5.2 $/hr.

Keywords


[1] سلطاندوست، محمدرضا. چیلرهای جذبی، ویرایش دوم. انتشارات یزدا، تهران، 1390. [2] پیرکندی، جاماسب. قاسمی، مجید. «مدل‌سازی و آنالیز ترمواکونومیکی یک نیروگاه سیکل ترکیبی پیل سوختی و میکروتوربین گازی»، مجله مهندسی مکانیک مدرس، دورۀ 13، شمارۀ 15، ‌صفحه 207ـ222، 1392. [3] Gogoi, T.K., Talukdar,T , "Exergy Based Parametric Analysis of a Combined Reheat Regenerative, Energy Conversion and Management", 83, pp. 119-132, 2014. [4] معرفت، مهدی. شفیعی، پیام. «طراحی سیستم CCHP برای ساختمان‌های اداری در تهران و ارزیابی ترمودینامیکی، زیست‌محیطی و اقتصادی آن نسبت به سیستم مرسوم»، مجله مهندسی مکانیک مدرس، دورۀ 14، شمارۀ 6، ‌صفحۀ 124ـ134، 1393. [5] Athanasovici, V, Le Corre, O, G. Brecq, G, Tazerout, M, "Thermoeconomic Analysis Method for Cogeneration Plants", Proceedings of ECOS Netherlands, pp 157-164, 2000. [6] Ameri, M, Behbahaninia, A, Tanha, A, "Thermodynamic Analysis of a Tri-Generation System Based on Micro-gas Turbine with a Steam Ejector Refrigeration System", Energy, Vol 32, pp 2203-2209, 2010. [7] Basrawi, F, Yamada, T, Nakanishi, K, Naing, S, "Effect of Ambient Temperature on the Performance of Micro Gas Turbine with Cogeneration in Cold Region", Applied Thermal Engineering, Vol 31, pp 1057-1067, 2010. [8] M. Kilic, O. Kaynakli, Second Law-Based Thermodynamic Analysis of Water-Lithium Bromide Absorption Refrigeration System, Energy, 32, pp 1505-1512, 2007. [9] Kaushik, S. C, Akhilesh, A, "Energy and Exergy Analysis of Single Effect and Series Flow Double Effect Water-Lithium Bromide Absorption Refrigeration Systems", International Journal of Refrigeration, 32, pp 1247-1258, 2009. [10] Palacios-Bereche, R. Gonzales, R, Nebra, S. A, "Exergy Calculation of Lithium Bromide-Water Solution and Its Application in the Exergetic Evaluation of Absorption Refrigeration Systems LiBr-H2O", International Journal of Energy Research, 36, pp 166-181, 2012. [11] Capstone Micro Gas Turbine, Accessed on 12 March 2015; http://www.capstoneturbine.com/products/c200. [12] Engineering Equation Solver / fchart software, Accessed on 17 July 2014; http://www.fchart.com/ees. [13] Bejan, A., Moran, M. J. Thermal Design and Optimization, John Wiley & Sons, 1996. [14] Ahmadi, P, Rosen. M. A. Dincer, I, "Greenhouse Gas Emission and Exergo-Environmental Analyses of a Trigeneration Energy System", International Journal of Greenhouse Gas Control, Vol 5, pp 1540–1549, 2011. [15] Klein, S. A., Nellis, G. F, Thermodynamics, Cambridge University Press, 2011. [16] Ahmadi, P, "Modelling Analysis and Optimization of Integrated Energy Systems for Multigeneration Purposes", Thesis, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2013. [17] Soltani, S, Mahmoudi, S, Yari M, Morosuk T, Rosen, Zare M, "A Comparative Exergoeconomic Analysis of Two Biomass and Co-Firing Combined Power Plant", Energy Conversion and Management, Vol 76, pp 83-91, 2013. [18] Atashkari, K, Nariman-Zadeh, N, Golcu M, Khalkhali A, Jamali, A, "Modelling and Multi-Objective Obtimization of a Variable Valve-Timing Spark-ignition Engine Using Polynomial Neural Networks and Evolutionary Algorithms", Energy Conversion and Management, Vol 48, No. 3, pp 1029-1041, 2007. [19] خانمحمدی، شعیب. آتشکاری، کاظم. کوهی کمالی، رامین. «ارزیابی عملکرد و بهینه‌سازی دو هدفه سیستم تولید سه‌گانه با استفاده از مدل بهبودیافتۀ گازسازی زیست‌توده»، مجله مهندسی مکانیک مدرس، دورۀ 15، شمارۀ 9، صفحۀ 209ـ222، 1394. [20] Valero, A, "Definition and Conventional Solution", Energy Conversion and Management, Vol 19, No. 3, pp 279-286, 1994.