Transient Model and Technical Analysis of Vanadium redox Flow Battery with Polymer Membrane

Authors

Abstract

The mentioned paper provides a new approach in the design, modeling and evaluation of vanadium redox flow batteries with polymer membrane. Vanadium redox flow batteries have been proposed as one of the advanced technologies in energy storage systems. This study is based on transient conditions of performance modeling of a battery cell. The proposed time-dependent model has developed based on comprehensive electrochemical, mechanical, fluid and electrical circuit relations along with the concept of taking reasonable assumptions, constraints and appropriate boundary conditions. The results of modeling explain the behavior of different variables such as the concentration of vanadium oxides, the rate of state of change and produced voltage in the battery operating time. On the other hand, the performed parametric study on battery variables represents a significant effect on temperature and initial concentration of the electrolyte solution on the output voltage.

Keywords


[1] Rychcik, M., Skyllas-Kazacos, M., "Characteristics of a New All-Vanadium Redox Flow Battery", Journal of Power Sources, Vol. 22, pp. 59-67, 1987. [2] Ghadamian, H., Hamidi, A. A., Farzaneh, H., Ozgoli, H. A., "Thermo-Economic Analysis of Absorption Air Cooling System for Pressurized Solid Oxide Fuel Cell/Gas Turbine Cycle", Journal of Renewable and Sustainable Energy, Vol. 4, pp. 043115-1 to 043115-14, 2012. [3] Jeorissen, L., Garche, J., Fabjan, C. H., Tomazic, G., "Possible Use of Vanadium Redox-Flow Batteries for Energy Storage in Small Grids and Stand-Alone Photovoltaic Systems", Journal of Power Sources, Vol. 127, pp. 98-104, 2004. [4] Kear, G., Shah, A. A., Walsh, F. C., "Development of the All-Vanadium Redox Flow Battery for Energy Storage: A Review of Technological", financial and policy aspects, International Journal of Energy Research, Vol. 36, pp. 1105-1120, 2011. [5] Yang, Z., Zhang, J., Kintner-Meyer, M. C. W., Choi, X., Lu, D., Lemmon, L. P., Liu, J., "Electrochemical Energy Storage for Green Grid", Chemical Reviews, Vol. 111, pp. 3577-3613, 2011. [6] Ponce de Leon, C., Frias-Ferrer, A., Gonzalez Garcia, J., Szanto, D. A., Walsh, F. C., “Redox Flow Cells for Energy Conversion”, Journal of Power Sources, Vol. 160, pp. 716-732, 2006. [7] Skyllas-Kazacos, M., Menicats, C., "The Vanadium Redox Battery for Emergency Back-up Applications", Proceedings of the 19th Intelec Meeting, IEEE Communication Society, Melbourne, Australia, pp. 463-471, 1997. [8] The VRB Energy Storage System (VRB-ESS™) the multiple benefits of integrating the VRB-ESS with wind energy - Case studies in MWH applications, Technical report, VRB Power Systems Inc., available in: http://wenku.baidu.com/view/4edece768e9951e79b8927a8, 2007. [9] Sum, E., Skyllas-Kazacos, M., "A Study of V(II)/V(III) Redox Couple for Redox Flow Cell Applications", Journal of Power Sources, Vol. 15, pp. 179-190, 1985. [10] Mohamed, M. R., Ahmad, H., Abu Seman, M. N., "Estimating the State-of-Charge of All-Vanadium Redox Flow Battery Using a Divided, Open Circuit Potentiometric Cell", Electronika IR Elektrotechnika, Vol. 19, pp. 37-42, 2013. [11] Aaron, D. S., Liu, Q., Tang, Z., Grim, G. M., Papandrew, A. B., Turhan, A., Zawodzinski, T. A., Mench, M. M., "Dramatic Performance Gains in Vanadium Redox Flow Batteries Through Modified Cell Architecture", Journal of Power Sources, Vol. 206, pp. 450–453, 2012. [12] Xu, Q., Zhao, T. S., Leung, P. K., "Numerical Investigations of Flow Field Designs for Vanadium Redox Flow Batteries", Applied Energy, Vol. 105, pp. 47–56, 2013. [13] Mohamed, M. R., Sharkh, S. M., Ahmad, H., Abu Seman, M. N., Walsh, F. C., "Design and Development of Unit Cell and System for Vanadium Redox Flow Batteries (V-RFB)", International Journal of the Physical Sciences, Vol. 7, pp. 1010-1024, 2012. [14] Skyllas-Kazacos, M., Robbins, R. G., "The All Vanadium Redox Battery", U.S. Patent No. 849 094, 1986. [15] Esfahanian, V., Mahmoodi, H., Babazadeh, H., Aghvami, M., Pasandeh, R., Torabi, F., Ahmadi, G., "Numerical Simulation of Electrolyte Particles Trajectory to Investigate Battery Cover Design Characteristics", Journal of Power Sources, Vol. 191, pp. 139-143. 2009. [16] Shah, A. A., Watt-Smith, M. J., Walsh, F. C., "A Dynamic Performance Model for Redox-Flow Batteries Involving Soluble Species", Electrochimica Acta, Vol. 53, pp. 8087–8100, 2008. [17] You, D., Zhang, H., Chen, J., "A Simple Model for the Vanadium Redox Battery", Electrochimica Acta, Vol. 54, pp. 6827–6836, 2009. [18] Tang, A., Ting, S., Bao, J., Skyllas-Kazacos, M., "Thermal Modelling and Simulation of the All-Vanadium Redox Flow Battery", Journal of Power Sources, Vol. 203, pp. 165–176, 2012. [19] Corcuera, S., Skyllas-Kazacos, M., "State-Of-Charge Monitoring and Electrolyte Rebalancing Methods for the Vanadium Redox Flow Battery", European Chemical Bulletin, Vol. 1, pp. 511-519, 2012. [20] Knehr, K. W., Agar, E., Dennison, C. R., Kalidindi, A. R., Kumbur, E. C., "A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane", Journal of The Electrochemical Society, Vol. 159, pp. A1446-A1459, 2012. [21] You, D., Zhang, H., Sun, C., Ma, X., "Simulation of the Self-Discharge Process in Vanadium Redox Flow Battery", Journal of Power Sources, Vol. 196, pp. 1578–1585, 2011. [22] Li, M., Hikihara, T., "A Coupled Dynamical Model of Redox Flow Battery Based on Chemical Reaction, Fluid Flow, and Electrical Circuit", Institute of Electronics, Information and Communication Engineers, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E91–A, pp. 1741-1727, 2008. [23] Zhao, P., Zhang, H., Zhou, H., Chen, J., Gao, S., Yi, B., "Characteristics and Performance of 10kW class All-Vanadium Redox-Flow Battery Stack", Journal of Power Sources, Vol. 162, pp. 1416–1420, 2006. [24] Mohamed, M. R., Ahmad, H., Abu Seman, M. N., Razali, S., Najib, M. S., "Electrical Circuit Model of a Vanadium Redox Flow Battery Using Extended Kalman filter", Journal of Power Sources, Vol. 239, pp. 284-293, 2013. [25] Xiong, B., Zhao, J., Tseng, K. J., Skyllas-Kazacos, M., Lim, T. M., Zhang, Y., "Thermal Hydraulic Behavior and Efficiency Analysis of an All-Vanadium Redox Flow Battery", Journal of Power Sources, Vol. 242, pp. 314-324, 2013. [26] Binyu, X., Zhao, J., Zhongbao, W., Chenda, Z., "State of Charge Estimation of an All-Vanadium Redox Flow Battery Based on a Thermal-Dependent Model", Power and Energy Engineering Conference (APPEEC), IEEE PES Asia-Pacific, 8-11 Dec., Kowloon, pp. 1–6, 2013. [27] Tang, A., Bao, J., Skyllas-Kazacos, M., "Dynamic Modelling of the Effects of Ion Diffusion and Side Reactions on the Capacity Loss for Vanadium Redox Flow Battery", Journal of Power Sources, Vol. 196, pp. 10737–10747, 2011. [28] Li, L., Kim, S., Wang, W., Vijayakumar, M., Nie, Z., Chen, B., Zhang, J., Xia, G., Hu, J., Graff, G., Liu, J., Yang, Z., "A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage", Advanced Energy and Materials, Vol. 1, pp. 394-400, 2011. [29] Ozgoli, H. A., Elyasi, S., Mollazadeh, M., "Hydrodynamic and Electrochemical Modeling of Vanadium Redox Flow Battery", Mechanics & Industry, Vol. 16, pp. 201-1 to 201-13, 2015. [30] Al-Fetlawi, H., Shah, A. A., Walsh, F. C., "Non-Isothermal Modelling of the All-Vanadium Redox Flow Battery", Electrochimica Acta, Vol. 55, pp. 78–89, 2009. [31] Al-Fetlawi, H., Shah, A. A., Walsh, F. C., "Modelling the Effects of Oxygen Evolution in the All-Vanadium Redox Flow Battery", Electrochimica Acta, Vol. 55, pp. 3192–3205, 2010. [32] Vynnycky, M., "Analysis of a Model for the Operation of a Vanadium Redox Battery", Energy, Vol. 36, pp. 2242-2256, 2011. [33] Schmal, D., Van Erkel, J., Van Dnin, P. J., "Mass Transfer at Carbon Fibre Electrodes", Journal of Applied Electrochemistry, Vol. 16, pp. 422-430, 1986. [34] Tomadakis, M., Robertson, T. J., "Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results", Journal of Composite Materials, Vol. 39, pp. 163-187, 2005. [35] Gonzaˇılez-Garcıˇıa, J., Bonete, P., Expoˇısito, E., Montiel, V., Aldaz, A., Torregrosa-Macia, R., "Characterization of a Carbon Felt Electrode: Structural and Physical Properties", Journal of Materials Chemistry, Vol. 9, pp. 419-426, 1999. [36] Skyllas-Kazacos, M., Menictas C., Kazacos, M., "Thermal Stability of Concentrated V(V) Electrolytes in the Vanadium Redox Cell", Journal of Electrochemical Society, Vol. 143, pp. L86-L88, 1996. [37] Sukkar, T., Skyllas-Kazacos, M., "Water Transfer Behaviour across Cation Exchange Membranes in the Vanadium Redox Battery", Journal of Membrane Science, Vol. 222, pp. 235–247, 2003. [38] Wen, Y., Zhang, H., Qian, P., Zhao, P., Zhou, H., Yi, B., "Investigations on the Electrode Process of Concentrated V(IV)/V(V) Species in a Vanadium Redox Flow Battery", Acta Physico-Chimica Sinica, Vol. 22, pp. 403-408, 2006. [39] Heintz, A., Illenberger, C., "Thermodynamics of Vanadium Redox Flow Batteries - Electrochemical and Calorimetric Investigations", Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 102, pp.1401–1409, 1998. [40] Tang, A., Bao, J., Skyllas-Kazacos, M., "Thermal Modelling of Battery Configuration and Self -Discharge Reactions in Vanadium Redox Flow Battery", Journal of Power Sources, Vol. 216, pp. 489-501, 2012.