Energy, Exergy and Economic Analysis of an Internal Combustion Engine Equipped with Turbocharger and Intercooler

Authors

Abstract

Exergy analysis is a method of evaluating the contribution proportion of each process on transmission of initial availability of the system and determining the positions of useful energy losses. In this research exergic analysis of an internal combustion engine equipped with turbocharger and intercooler is attended. To do this, at first, the procedure of performance simulation of the system components i.e. engine, compressor, turbine and intercooler is briefly explained. Then by defining exergy terms and using related exergy equilibrium equations for open and closed systems necessary conceptual basis for exergy analysis, is introduced. Also exergo-economic analysis, as a powerful tool for cost study and optimization of complex energy systems is developed by combining the second law of thermodynamics concept with economic view points. The results show that combustion process produces the most proportion of the system irreversibility. Furthermore, regarding exergo-economic parameters, engine has the most suitable performance among the related components of the system.

Keywords


[1] Heywood, J. B., Internal Combustion Engine Fundamentals, New York, McGraw Hill, 1988. [2] Watson N., Jonata, M. S., Turbocharging the internal combustion engine, New York, MacMillan Press LTD, 1982. [3] Garrett, T. K., Newton, K, Steeds, W., The Motor Vehicle, Oxford, Butterworth-Heinemann, 13th ed., 2001. [4] Korakianitis, T., Sadoi, T., "Turbocharger-Design Effects on Gasoline-Engine Performance", Journal of Engineering for Gas Turbines and Power, Vol. 127, pp. 525-530, 2005. [5] Kesgin, U., "Effect of Turbocharging System on the Performance of a Natural Gas Engine", Energy Conversion and Management, Vol. 46, pp. 11-32, 2005. [6] Rakopoulos C. D., Kyritsis, D. C., "Comparative Second-Law Analysis of Internal Combustion Engine Operation for Methane, Methanol, and Dodecane Fuels" Energy, Vol. 26, pp. 705-722, 2001. [7] Bejan, A., Advanced Engineering Thermodynamics, New York, John Wiley and sons, Inc., 1988. [8] Rakopoulos, C. D., Giakoumis, E. G., "Second-Law Analyses Applied to Internal Combustion Engines", Operation Progress in Energy and Combustion Science, Vol. 32, pp. 2-47, 2006. [9] Kim, S. M., Oh, S. D., Kwon, Y. H., Kwak, H. Y., "Exergoeconomic Analysis of Thermal Systems", Energy, Vol. 23, pp. 393–406, 1998. [10] Hamed, O. A., Al-Washmi, H. A., Al-Otaibi, H. A., "Thermoeconomic Analysis of a Power/Water Cogeneration Plant", Energy, Vol. 31, pp. 2699-2709, 2006. [11] Abbaspour, M., Saraei, A. R., "Thermoeconomic Analysis and Multi-Objective Optimization of a LiBr-Water Absorption Refrigeration System", Int. J. Environ. Res., Vol. 9(1), pp. 61-68, 2015. [12] Ahmadi, P., Dincer, I., Rosen, M. A., "Thermodynamic Modeling and Multi-Objective Evolutionary-Based Optimization of a New Multigeneration Energy System", Energy Conversion and Management, Vol. 76, pp. 282-300, 2013. [13] Gupta, M., Kumar, R., "Exergoeconomic Analysis of a Boiler for a Coal Fired Thermal Power Plant", American Journal of Mechanical Engineering, Vol. 2(5), pp. 143-146, 2014. [14] Almasi, A., Barzegra Avval, H., Ahmadi, P., Najafi, A. F., "Thermodynamic Modelling, Energy and Exergoeconomic Analysis and Optimization of Mahshahr Gas Turbine Power Plant", Proceeding of the Global Conference on Global Warming, 2011. [15] Zare, V., Mahmoudi, S. M. S., Yari, M., "An Exergoeconomic Investigation of Waste Heat Recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) Employing an Ammonia–Water Power/Cooling Cycle", Energy, Vol. 61, pp. 397-409, 2013. [16] Shokati, N., Mohammadkhani, F., Yari, M., Mahmoudi, S. M. S., Rosen, M. A., "A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine Modular Helium Reactor via Organic Rankine Cycles", Sustainability, Vol. 6, pp. 2474-2489, 2014. [17] Lazaretto, A., Tsatsaronis, G., "SPECO: A Systematic and General Methodology for Calculating Efficiencies and Costs in Thermal Systems", Energy, Vol. 31, pp. 1257-1289, 2006. [18] Valero, A., Lozano, M. A., Serra, L., Torres, C., "Application of the Exergetic Costtheory to the CGAM Problem", Energy, Vol. 19, pp. 365-381, 1994. [19] Benson, R. S., Rowland, S., Internal combustion engine, Oxford, Pergamon, 1979. [20] Pourkhesalian, A. M., Shamekhi, A. H., Salimi, F., "Alternative Fuel and Gasoline in an SI Engine: A Comparative Study of Performance and Emissions Characteristics", Fuel, Vol. 89, pp. 1056-1063, 2010. [21] Mozafari, A., Prediction and Measurements of Spark Ignition Engine Characteristics using Ammonia and Other Fuels, PhD Thesis, University of London, London, 1988. [22] گودرزی، امیر، آنالیز اکسرژی سیستم‌های توربوچارج در موتورهای احتراق داخلی، کارشناسی ارشد، دانشگاه صنعتی شریف، تهران، ایران، 1391. [23] گودرزی، امیر، دوستدار، محمد مهدی، «مقایسۀ اگزرژیک عملکرد موتورهای احتراق داخلی اشتعال جرقه‌ای برای سوخت‌های بنزین، متان و هیدروژن»، مجلۀ سوخت و احتراق، دورۀ 7، صفحۀ 90- 105، دانشگاه تربیت مدرس، 1393. [24] Galvas, M.R. "Fortran Program for Predicting Off-Design Performance of Centrifugal Compressors", NASA TN D-7487, 1973. [25] Whitfield, A. and Baines, N.C. "A General Computer Solution for Radial and Mixed Flow Turbomachine Performance Prediction", Int. J. Mech. Sci., Pergamon press., Vol. 18, pp. 179-184, 1976. [26] Whitfield, A., Baines, N. C., Design of Radial Turbomachines, London, Longman Scientific and Technical Publishing Company, 1990. [27] گودرزی، امیر، دوستدار، محمد مهدی، «آنالیز اگزرژی توربین جریان مختلط در شرایط کاری مختلف»، کنفرانس ملی توربین گاز، دورۀ 3، دانشگاه علم و صنعت، 1393. [28] Incropera, F. P., De Witt, D. P., Introduction to Heat Transfer, New York, John Wiley and sons, Inc., 3th ed., 1996. [29] Kays, W. M., London, A. L., Compact Heat Exchangers, New York, McGraw Hill, 3th ed., 1984. [30] Rathod, M. K., Shah Niyati, K., Prabhakaran, P., "Performance Evaluation of Flat Finned Tube Fin Heat Exchanger with Different Fin Surfaces", Applied Thermal Engineering, Vol. 27, pp. 2131-2137, 2007. [31] Sonntag, R. E., Borgnakke, C., Van Wylen, G. J., Fundamentals of Thermodynamics, New York, John Wiley and sons, Inc., 6th ed., 2003. [32] Kenneth Wark, J. R., Advanced Thermodynamics for Engineers, New York, McGraw Hill, 1995. [33] Abusoglu, A., Kanoglu, M., "Exergetic and Thermoeconomic Analyses of Diesel Engine Powered Cogeneration: Part 1- Formulations", Applied Thermal Engineering, Vol. 29, pp. 234-241, 2009. [34] Çolpan, C. Ö., Exergy Analysis of Combined Cycle Cogeneration Systems, MSc Thesis, Middle East Technical University, Ankara, 2005. [35] Kotas, T. J., The Exergy Method of Thermal Plant Analysis, Florida, Krieger Publishing Company, 1995.