A Novel P- PSO Algorithm Solution of Dynamic Economic Dispatch

Authors

Abstract

In solving the electrical power systems economic dispatch (ED) problems, the goal is to schedule the committed generating units outputs so as to meet the required load demand at the minimum operating cost while satisfying all units and system equality and inequality constraints. This paper presents a different approach to economic dispatch problems with particle swarm optimization (PSO) technique. In the proposed method, in order to achieve better control on the algorithm’s exploration and exploitation capabilities, particles velocity is dependent on both particle’s fitness and time. Perturbation module is adopted to perform perturbation on some particles and provide extra diversity for it to jump out from local optima and avoid premature convergence. The proposed P-PSO method solves both the ED problem with nonconvex/nonsmooth cost functions due to valve-point loading and the ED problem that takes into account nonlinear generator characteristics such as ramp-rate limits and prohibited operating zones in the power system operation. The performance of the P-PSO method is evaluated on four different power systems, and compared with that of other effective optimization methods in terms of the solution quality and convergence characteristics. The outcome is very encouraging and suggests that the P- PSO algorithm is very efficient to solve power system economic dispatch problem.

Keywords


[1] فلقی، حمید.، امینی، امیر. و نجفی، ارسلان.، «توزیع بهینۀ اقتصادی بار با در نظر گرفتن محدودیت‌های عملی نیروگاه‌ها با استفاده از الگوریتم جهش قورباغۀ بهبودیافته»، مجله مدیریت انرژی، شمارۀ اول، سال اول، صفحۀ 38-48 ، پاییز 1390. [2] امینی، امیر.، فلقی، حمید. و رمضانی مریم.، «توزیع بار بین نیروگاه‌ها به‌منظور کاهش همزمان هزینۀ سوخت و آلاینده‌های زیست‌محیطی»، مجلۀ مدیریت انرژی، شمارۀ اول، سال سوم، صفحۀ 2-15، بهار 1392. [3] هوشمند، رحمت‌الله و پرستگاری، معین. ، کاربرد الگوریتم PSO در پخش بار اقتصادی و پخش آلودگی برای توابع هزینۀ ناصاف با وجود تلفات خطوط انتقال و محدودیت‌های عملی سیستم، نشریه مهندسی برق و کامپیوتر ایران، سال 6، شمارۀ 3، 1387. [4] Azizipanah, R., et al, "Robust, Fast and Optimal Solution of Practical Economic Dispatch by a New Enhanced Gradient-Based Simplified Swarm Optimisation Algorithm", IET Gener. Transm. Distrib, Vol. 7, pp. 620–635, 2013. [5] Adler, R.B., Fischl, R. "Security Constrained Economic Dispatch with Participation Factors based on Worst Case Bus Load Variations", Power Apparatus Syst IEEE Trans, 96, pp.347–56, 1977. [6] Bui, R.T., Ghaderpanah, S., "Real Power Rescheduling and Security Assessment", IEEE Trans. on Power Apparatus and Systems, Vol.101, No.8, pp.2906–2915, 2007. [7] Wood, A. J., Wollenberg, B. F., "Power Generation Operation and Control", 2nd ed., Wiley, New York, 1996. [8] Wong,K. P.,Fung, C. C., "Simulated Annealing based Economic Dispatch Algorithm", IEE Proc.-C, Vol. 140, No. 6, pp. 509-515, 1993. [9] Walters, D. C., Sheble, G. B., "Genetic Algorithm Solution of Economic Dispatch with Valve Point Loading", IEEE Transactions on Power Systems, Vol. PWRS-8, No. 3, pp. 1325-1332, 1993. [10] Yang, H. T.,Yang, P. C., and Huang, C. L., "Evolutionary Programming based Economic Dispatch for Units with Non-Smooth Fuel Cost Functions", IEEE Transactions on Power Systems, Vol. 11, No. 1, pp. 112-118, 1993. [11] Pancholi, RK, Swarup, K.S., "Particle Swarm Optimization for Security Constrained Economic Dispatch. In: International Conference on Intelligent Sensing and Information Processing", (IEEE Cat. No. 04EX783), Chennai, India, pp. 7–12, 2004. [12] Selvakumar, I., Dhanushkodi, K., Jaya Kumar. J., Kmar Charlie Paul, C., "Particle Swarm Optimization Solution to Emission and Economic Dispatch Problem", IEEE 2003. [13] Park, JB., Lee, K.S., Shin, JR., Lee, KY., "A Particle Swarm Optimization for Economic Dispatch with Non-Smooth Cost Functions", IEEE Transaction of Power System, pp. 34–42, 2005. [14] Park, J. B., Jeong,Y. W., Kim, H. H., and Shin, J. R., "An Improved Particle Swarm Optimization for Economic Load Dispatch with Valve Point Effect", International Journal of Innovations in Energy Systems and Power, Vol. 1, No. 1, 2006. [15] Abido, M. A., "Multiobjective Particle Swarm Optimization for Environmental/ Economic Dispatch Problem", In: Proceedings of the 8th international power engineering conference, pp. 1385–90, 2007. [16] Cohelo, SL, Lee, SC., "Solving Economic Load Dispatch Problems in Power System Using Chaotic and Gaussian Particle Swarm Optimization Approaches", Electrical Power and Energy Systems 30, pp. 297–307, 2008. [17] Chuanwen, J., Etorre. B., "A Self-Adaptive Chaotic Particle Swarm Algorithm for Short Term Hydroelectric System Scheduling in Deregulated Environment", Energy Conversion & Management, pp.2689–2696, 2011. [18] Giang, Z.L., "Particle Swarm Optimization to Solving the Economic Dispatch Considering the Generator Constraints", IEEE Transaction on Power System, pp.1187–95, 2003. [19] Bae Park, J., et al, "An Improved Particle Swarm Optimization for Nonconvex Economic Dispatch Problems", IEEE Transactions on Power Systems, Vol. 25, No. 1, pp.754-762, 2010. [20] Jun, S., et al, "Solving the Power Economic Dispatch Problem with Generator Constraints by Random Drift Particle Swarm Optimization", IEEE Transactions on Industrial Informatics, Vol. 10, No. 1, pp. 222-232, 2014. [21] Chakraborty, S., et al, "Solving Economic Load Dispatch Problem with Valve-Point Effects Using a Hybrid Quantum Mechanics Inspired Particle Swarm Optimization", IET Gener. Transm. Distrib, Vol. 5, Iss. 10, pp. 1042–1052, 2011. [22] Mahor, A., Prasad, V., Rangnekar, S., "Economic Dispatch Using Particle Swarm Optimization", A review, Renewable and Sustainable Energy Reviews 13, pp. 2134–2141, 2009. [23] Sadaat H., "Power system analysis", WCB/McGraw-Hill; 1999. [24] Pereira-Neto, A., Unsihuay, C., Saavedra, O.R., "Efficient Evolutionary Strategy Optimization Procedure to Solve the Nonconvex Economic Dispatch Problem with Generator Constraints", IEEE Proc Gener Transm Distrib, 152(5), pp. 653–60, 2005. [25] Nasir, M., Das, S., Maity, D., Sengupta, S., Halder, U., Suganthan, P.N., "A Dynamic Neighborhood Learning based Particle Swarm Optimizer for Global Numerical Optimization", Information Sciences, pp.16-36, 2012. [26] Kennedy, J., Eberhart, R., "Particle Swarm Optimization", in Proc. IEEE Int. Conf. Neural Networks, Piscataway, NJ, pp. 1942–1948, 1995. [27] R. Eberhart and J. Kennedy, "A New Optimizer Using Particle Swarm Theory", in Proc. 6th Int. Symp. Micro Machine and Human Science, pp. 39–43, 1995. [28] X. Hu, Y. Shi, and R. Eberhart, "Recent Advances in Particle Swarm", in Proc. Congr. Evolutionary Computation, Vol. 1, pp. 90–97, 2004. [29] Su, C.T., Lin, C.T., "New Approach with a Hopfield Modeling Framework to Economic Dispatch", IEEE Transactions on Power Systems, Vol. 15, No. 2, pp. 541– 545, 2000.