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Abstract 

Smart grids have been introduced to address power distribution system challenges. In conventional power distribution 

systems, when a power outage happens, the maintenance team tries to find the outage cause and mitigate it. After this, 

some information is documented in a dataset called the outage dataset. If the team can estimate the outage cause before 

searching for it, the restoration time will be reduced. In line with smart grid concepts, an association rule-based method 

is presented in this paper to find the outage cause. To do this, we have first combined outage, load, and weather datasets 

and extracted features. Then, for every cause, the records are labelled main class or others. The association rules are 

extracted and evaluated. Through these rules, one can determine whether the outage has happened because of a fault in 

a certain piece of equipment or not. Doing so alongside using smart devices may lead to reliability enhancement. 

Keywords: Power distribution outage, Association rule mining, Distribution systems reliability, Automatic fault 

management. 
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1. Introduction 

With an increase in demands for electricity, the power 

grid has faced a lot of obstacles that have made it hard to 

keep reliability at the desired level. The traditional model 

of power system usually consists of generation level, 

power transmission, and electricity distribution. As the 

final part of this scheme, the distribution system plays a 

pivotal role in the reliability of the system. Also, as a 

result of load increment, the structure of distribution 

systemis now more complex than before and needs to be 

treated with improved management and control 

techniques. Poor distribution system reliability usually 

decreases the profit earned by increasing the customers’ 

dissatisfaction. Hence, the smart grid has been proposed 

as a solution to these problems. 

One of the main problems which decrease reliability 

is power outages that happen because of a fault in a 

certain piece of equipment. These outages may take time 

to be found and mitigated because of the complex and 

radial nature of the feeders. Finding a way to estimate the 

outage cause before sending a maintenance team can be 

helpful because the team will only look for the estimated 

cause when examining the feeder. Also, preventive 

maintenance (PM) is another way to decrease outage 

frequency. To improve PM’s outcome, one can identify 

the various factors that affect certain outage cause 

occurrence and try to decrease their effects. Utilizing the 

proposed idea in combination with monitoring 

capabilities in smart grids can decrease repair time and 

increase reliability. 

Recently, many devices have been offered to improve 

the controllability and reliability of distribution system in 

form of smart grids. A famous set of devices is usually 

referred to as system automation. It consists of various 

control and monitoring instruments such as remote fault 

locators (RFL), automated switches, and smart relays 

which are used to control the system remotely. Another 

scheme is usually used in the form of SCADA systems 

that gather data from sensors and other measurement 

instruments to control a certain mechanism or system. 

Using these devices in the power and distribution systems 

has led to an enormous volume of valuable raw data. 

These datasets are usually generated in real or near-real 

time. There are other data-generating sources such as 

AMIs that monitor consumed load by the customers. It is 

interesting to know that as of 2018, 87 million AMI 

devices have been installed in the US [1]. The size of the 

mentioned datasets usually complicates the procedures 

employed to analyze it, and advanced methods should be 

used to deal with it. 

When an outage occurs, a maintenance team is 

dispatched to find and remove or replace the faulty 

equipment. When the faulty equipment is taken care of, 

the service will be restored. These types of outages 

usually go by the name of permanent outages. After 

power restoration, information such as the exact time of 

the outage, the feeder where the fault has occurred, 

expected energy not supplied (ENS), and the outage 

cause (the type of the equipment, natural causes, etc.) are 

documented. There are other types of outages in which 

the outage duration is below 10 minutes. These outages, 

called momentary outages, are mitigated either by 

manual or by automatic reclosing. These records along 

with respective information are usually registered in 

certain software programs when documenting the 

outages. The datasets compiled using these records are 

called outage datasets in this paper.  

To overcome the problems mentioned with the large 

datasets, the researchers have proposed to use a branch of 

data science called data mining. It is one of the advanced 

data analysis techniques that seek to find useful and 

hidden relationships in a datasets. Some of the frequently 

used methods include classification, clustering, and 

association rule mining. Classification models try to build 

a model called a classifier to diagnose a record’s class 

using a set of features. As an unsupervised technique, 

clustering aims at finding certain groups in the datasets 

called clusters where the records are most similar to each 

other. Usually, the criteria used are records’ proximity. 

Finally, The technique of association rule mining, used 

here, is employed to find rules that connect a set of items 

called antecedents to another item entitled the consequent 

in the dataset. 

Recently, several authors have tried to utilize data 

mining methods to analyse the datasets generated in 

power systems better. PMUs are special devices that can 

measure voltage magnitude and phase employing a pre-

specified sampling rate. These devices are also capable of 

sending this information to a control centre. [2] and [3] 

have proposed to use classification methods to offer 

models that describe the transient stability mechanism. 

The authors of [2] have constructed a binary classifier 

that can tell if the event will jeopardize the system’s 

stability by employing PMU datasets. Also, [3] has 

suggested using a supporting vector method called CVM 

can reduce the time spent on constructing the classifier. 

Using Micro-PMU data to diagnose an event’s source is 

outlined in [4]. This paper shows that doing such will 

lead to improved situational awareness. Besides, [5] and 

[6] have proposed methods to obtain approximately the 

load patterns based on AMI data using classification and 

the clustering based algorithms respectively. Finally, 

diagnosing electricity theft employing AMI data is the 

subject of [7]. 
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Besides using these datasets to analyze the system’s 

behaviour, many have utilized different data-driven 

methods to improve the reliability of the system. Several 

tasks can be carried out to enhance reliability including 

fault locating, outage prediction, and outage cause 

diagnosis in smart grids. 

Fault locating is one of the most vital operations in 

distribution systems. Sometimes, finding the location of 

the fault that has caused an outage is a little hard due to 

an extensive use of radial feeders. To solve this issue, 

[8]-[9] have used the datasets available to build models 

that can roughly estimate the fault’s location. In [8], the 

authors have employed Bayesian networks and historical 

outage information to locate the fault. [10] has 

recommended applying SVM combined with discrete 

wavelet transform (DVM) to find the location of the fault 

in mesh grids. [11] and [9] have also used k-nearest 

neighbors and rough set theory respectively to locate the 

element responsible for the outage. In [11], the fault is 

also classified according to the phases involved (single-

phase, three-phase, etc), whereas in [9], the outage cause 

is identified as well. 

Another solution to decrease the effect of outages on 

the reliability of a system is to predict the time or the 

number of outages. To do so, several papers have 

proposed various methods to predict different outage 

causes. For instance, predicting weather-related outages 

is addressed in [12] and [13] where the use of random 

forest and logistic regression (LR) is outlined to find 

models that can accurately predict weather-caused 

outages. Other papers including [14] have tried to 

propose procedures that can estimate the duration of 

hurricane-caused outages. In addition to the weather’s 

effect, some researchers have taken other causes such as 

vegetation or birds’ activity into account. To predict the 

outages caused by birds collision, [15] has built a 

Bayesian network based on weather historical data. 

Vegetation-related outages prognosis is also discussed in 

[16] and [17]. [16] solves this problem by proposing to 

use LR and artificial neural networks (ANN) to find 

prediction models while [17] does this using time series 

algorithms. 

To increasing reliability, another approach tries to 

find the outage occurrence or its causes using an outage 

dataset. For instance, [18] uses SVM to diagnose line 

outages. The datasets in this paper include the line outage 

dataset and consumers’ meter data. [19] uses ANN and 

LR to build a model that can tell if the outage is caused 

by a bird accident or it is a tree-related one. The authors 

of [20] developed tree classifiers based on decision trees, 

LR, and naïve Bayesian network where the classes are 

either equipment related or non-equipment related. 

Another data mining method, association rule mining, 

is a method employed in [21] and [22] to find the 

important and useful rule that help the operator identify 

the faulty element faster. [21] proposes five classes--

equipment, vegetation, animals, lightning, and public-- 

accidents to describe the outage causes. This paper 

extracts the rules in which the consequent is one of the 

classes already mentioned. The antecedents here are a set 

of features such as temperature, the protective device, etc. 

[22] solves the same issue, yet it adds a load feature that 

leads to better and more accurate rules. 

As depicted by the previous paragraphs, most of the 

papers tend to focus on natural causes such as vegetation 

or animals’ activity. In fact, the equipment-related 

outages have not been investigated comprehensively. 

Also, how momentary outage occurrence affects the 

permanent ones and the role of scheduled maintenance 

have not been considered in similar association rule-

mining based papers for identifying the outage cause. 

To improve the outage diagnosing, this paper 

proposes an association rule-mining based method to 

extract rules that help find the faulty piece of equipment 

faster. To do this, it processes three different datasets to 

gain useful features. The first and the most important 

dataset consists of the permanent outages between Mar. 

2015 and Mar. 2019. Several features such as outage 

month, outage hour, the distance between the permanent 

outage and the last momentary outage in the same feeder, 

etc. are calculated for every record. The second dataset 

indicates the load consumed by the sub-transmission 

substation that powers the faulty feeder in the form of 

sub-hourly values recorded by smart metes. We have 

extracted the average load and normalized average load 

from this dataset. Finally, the last dataset is weather 

historical information. Features like temperature, 

humidity, and wind speed have been obtained. After the 

pre-processing section, the outage classes are labeled 

according to the malfunctioning piece of equipment 

(cable, cable termination, etc.). For every equipment-

related outage cause, we have formed a dataset in which 

the record is labelled as either main class or others 

depending on the main outage cause. After balancing, the 

Apriori algorithm is run, and several rules are obtained. 

These rules are evaluated using their confidence, rule 

support, lift, and chi-square to make sure that the most 

important rules are selected. The results show that by 

having a handful of features and using one of the 

extracted rules, one can narrow down the outage causes. 

If the operators use the estimated cause, they can 

facilitate the smart grid fault management procedure by 

informing the maintenance team of the possible outage 

cause. 

The major contributions of this paper are as follows: 

(i) finding the possible outage cause before sending the 
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maintenance team which can greatly decrease the repair 

time. (ii) finding a set of factors that frequently lead to a 

certain outage cause, which can be used to strengthen the 

PM’s effect on the feeders. 

2. Methodology 

The use of data mining methods, especially association 

rules and their benefits, was outlined in the introduction. 

To apply such a method, first, we will discuss how 

various datasets are merged to achieve the main dataset 

that contains useful features. These datasets are outage 

dataset, sub-transmission substation load, and weather 

historical data. In the second part, the Apriori algorithm 

will be introduced and explained. Finally, the proposed 

method used to extract interesting rules is presented. 

2.1. Pre-Processing 

As the first step in the pre-processing part, we will define 

features to describe the outage. The first dataset is called 

the outage dataset. When an outage occurs, the 

information regarding the outage is documented. This 

paper uses the outages that have happened between Mar. 

2015 and Mar. 2019. In this dataset, the outages are either 

scheduled or unscheduled. The available scheduled 

outages are usually due to preventive equipment 

maintenance and equipment upgrades. In the current 

dataset, about 30% of the outages (2032 records) are 

scheduled outages. The duration of some unscheduled 

outages is so short that they can be taken care of through 

manual or automatic reclosing. These outages are called 

momentary outages in this paper. About 70% of 

unscheduled outages (3123 records) belong to this 

category. If the outage is not mitigated by doing the 

above, the maintenance crew is dispatched to locate the 

faulty part to localize or repair it. Here, we call these 

outages as the permanent ones. After power restoration 

information such as the faulty feeder, the breaking point 

of the circuit (substation output or a T-off), unsupplied 

energy, the exact time of the outage, repair duration, the 

outage cause, etc are logged. Fig.1 depicts the 

approximate share of the most important causes. Some 

features are more important than the others in this 

dataset. For instance, repair duration, ENS, and breaking 

point do not contain significant info about the outage 

cause. Hence, they will not be used. To validate this 

statement a feature selection algorithm was run on this 

dataset, and it was found out that the most important 

features are as follows: The month when the outage 

happens (OM); the hour of the outage (OH); and the 

substation’s zone. There are seven zones in the present 

grid that are tags for the sub-transmission substation’s 

location. The demand and the grid configuration are 

unique to every zone. Hence, they affect some certain 

outage cause occurrence. 

 
Fig. 1: Share of each of the most important outage causes 

 

Three other features can be generated according to the 

outage dataset. These features describe the effect of 

monetary outages and maintenance on permanent outages 

happening. The first feature is named the number of 

momentary in the last 30 days (NM). It indicates how 

many short-term outages have happened in the last 30 

days in the feeder where the permanent outage has 

happened. The second feature, days from the last 

momentary (DM) show how many days have passed 

since the last monetary outage in the feeder. Finally, the 

last feature, entitled last scheduled maintenance (LM), 

shows the distance between the permanent outage time 

and last maintenance on the feeder in terms of days. 

Another important dataset, especially in the case of 

equipment faults, is the load dataset. In this paper, the 

sub-hourly electricity demand for every substation is 

available for Mar. 2015 to Mar. 2019. Since the load 

value does not affect outage occurrence instantaneously, 

it is better to use the average load value of 3 hours for 

outage occurrence. To do so, the time when an outage 

happens is obtained. Then, the load level of the sub-

transmission substation in the last 3 hours is averaged. 

Since different feeders are designed for different demand 

levels, it would be wise to normalize the load value. The 

average load calculated in the last step is called average 

load (AL). To calculate the normalized load, the peak 

load of the substation in the respective year is called peak 

load (PL). The normalized load value (NL) can be 

obtained using (1): 

AL
NL

PL
      (1) 

The third dataset is that of historical weather records. 

In this dataset, retrieved from [23], the values for air 

temperature (T), air humidity (H), and wind speed (WS) 

have been documented in the form of 3-hour 

observations. This dataset covers weather information 
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from Mar. 2015 to Mar. 2019. To extract the useful 

features, OH (the outage hour) is obtained. The closest 

weather record to OH is used as the weather record for 

that particular outage. For instance, if the outage has 

happened at 8 AM and if we have weather reports for 7 

AM and 10 AM, the former will be used. 

2.2. Apriori Algorithm 

In the last section, the pre-processing part was described. 

In many applications, we need to establish some sort of 

relationship between the items in hand. For example, in 

this paper, we wish to find the factors responsible for 

certain outage causes. In fact, we mean to find the right 

set of antecedents that leads to the outage cause 

(consequent). Any dataset can be represented in 

transactional form, meaning every record (outage) is 

characterized by a combination of discrete features. The 

discretisation process will be explained in the next 

section. 

In every transactional database, the first step to find 

association rules is to extract the most frequent item sets. 

The item set is usually in the form of I in the below 

notation [24]: 

1 2{ , ,..., }nI x x x     (2) 

In the above set, xn denotes certain items. The 

numbers are discretisation labels that are defined in 

section 2.3. The item set shows that there are records that 

contain these items. In this type of database, the number 

of records that contain an item set is called the item set’s 

support and is shown by Sup (I).  

The simplest method used to mine frequent item sets 

is to generate a candidate item set. In every stage, item 

sets with n items will be generated. If we take the total 

number of features used as m, the number of candidates 

in the final stage will be 2m. After this step, the dataset is 

scanned to calculate the support of every item set in 

every stage. The item set with the support value below a 

pre-set variable called minimum support (MinSup) will 

be rejected as they are not “frequent” [24]. It may take 

long to generate candidates and much longer to calculate 

their support. This method is not practical because of the 

calculational complexity. 

The majority of the item sets generated in the last step 

are infrequent. Thus, an important property called Apriori 

property indicates that if an item set’s support is s, its 

children’s support (the item set generated by adding 

another item to the parent item set) will be either equal or 

lower than s [25]. With this fact in mind, the above 

algorithm can be modified to reduce greatly the search 

space and, therefore, the time consumed. To do so, we 

start at the node where the item set is the null set. In the 

next stage, we add another item. In this stage, the support 

of all the item sets will be computed. If it is not frequent, 

we will not add items to it. In this manner, all the eligible 

item sets are found. 

An association rule is a relationship between a 

frequent set of items (antecedents) and another item 

(consequent). This type of rule is in the form of (3). Here, 

the main focus is to find items (X) that lead to a certain 

outage cause (Y). 

X Y      (3) 

 For every rule, we can define some measures that 

evaluate its precision and interestingness. The first index 

is the rule’s support (RS) and is defined by (4). Here, 

( )Sup X Y  denotes the number of records that contain 

both X and Y. Also, S is the total number of the records. 

The higher RS is, the more general the rule will be. The 

next criterion, confidence, shows the chance of X leading 

to Y. Confidence is the conditional probability of Y’s 

occurrence given X happens. According to this statement, 

confidence is defined by (5). The maximum value for 

confidence is 1. Hence, a higher value of confidence 

means a more precise and more valid rule. Equation (6) 

defines lift as one of the indexes used here. Lift is the 

correlation between X and Y. Values higher than 1 

indicate a positive correlation, whereas values lower than 

1 show that they are negatively correlated [25]. If lift is 

higher than 1, the occurrence of X leads to the occurrence 

of Y. The higher lift value is a sign of a more useful rule 

and is preferred. 

( )
=

Sup X Y
RS

S


    (4) 

( )

( )

Su
c

p X
e

Y
onfid e

Su
n

p X
c


    (5) 

( )

( ) ( )

Sup X Y
lift

Sup X Sup Y


     (6) 

The final index used in this research is called the chi-

square test. It is a test aimed at determining if two 

discrete features are related and was first presented by 

Pearson in 1900 in [26]. It can be used in the rule mining 

area to find out if X and Y are indeed related, and, hence, 

if the rule is important. First, we explain it based on the 

independence test. It can also be used for association 

rules evaluation. To use it, a confusion matrix is formed 

similar to Table 1[27]. Here we want to see if feature #1 

(F1) and feature #2 (F2) are related. In this table, n1 and n2 

denote the number of labels for F1 and F2 respectively. 

Also, nij is the number of records with certain labels for 

F1 and F2. According to the notations introduced in Table 

1, the expected frequency for each pair of values is 

defined by (7). With the expected value for each of the 

table’s cells, we can calculate 2  in (8). Next, we need to 

compute the probability of independence. This 
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probability (p) is calculated through (9). In this equation, 

q is the degree of freedom and is equal to (n1-1) (n2-1) 

[27], and is the sign of the gamma function. If p is 

lower than a variable (pmax) set before computation, the 

two features are dependent. Otherwise, the dependence 

hypothesis is rejected. 
 

1 2

i j

ij

n n
e

S
      (7) 

1 2
2

2

1 1

( )n n
ij ij

i j ij

n e

e 


       (8) 

2

1
2 2

22 ( )
2

q x

q

x e
p dx

q

 






     (9) 

 

To apply the explained method to association rules we 

simply change F1 with X and F2 with Y. The difference 

here is that n1 and n2 are both equal to 2. Hence, the 

outcome for antecedent and the consequent is either true 

or false. Applying this method clarifies whether the rule’s 

result is indeed related to the real class of the record. By 

setting a pmax, we can find and eliminate the rules which 

have p higher than pmax. 

2.3. Proposed Method 

In the last section, the procedure utilized to gain the final 

dataset was presented. Apriori algorithm was also 

outlined and discussed as the base method. Here we 

propose the technique employed in this paper to extract 

useful rules. 

Table 1: A sample confusion matrix 

1
F

 

2F 

 21a 21a … 
22na Row counts 

11a 11n 12n … 
21nn 1

1n 

12a 21n 22n … 
22nn 1

2n 

…
 

… … … … 

…
 

11na 11nn 
1 2nn … 

1 2n nn 
1

1

nn 

Column counts 
2

1n 2

2n … 
2

2

nn S 

 
The first step to initiate an association rule mining 

procedure is to discretize the features since item sets 

should be a combinations of categorical features. To 

prevent the antecedents in all rules from becoming biased 

toward a certain feature tag, the equal binning method is 

employed. It means that the number of records with each 

tag is equal. Table 2 shows how the continuous features 

presented before they are discretized and their categorical 

counterpart. 

The main interest here is to find those factors that 

affect a certain outage cause occurrence. To find these 

factors it is clear that we have to extract rules in which 

the consequence is the outage cause. One simple way is 

to label the records based on the outage cause that we are 

interested in. Meaning, we can label the important outage 

cause as main class. Hence, other records will be labeled 

as others. This act reduces the number of classes to two. 

Therefore, the consequent is either main class or others. 

Doing so, for every important outage cause creates sub-

datasets to the number of important causes. 

Clearly, the number of records with the label of others 

is more than main class records. If we run the algorithm, 

the consequence will be others for most of the rules. 

Because of this, balancing is necessary to gain relevant 

rules. In this paper, the records are balanced in a way that 

the number of both classes are equal to each other. After 

the algorithm is run, for every outage cause, the rules in 

which the consequence is main class are separated. Next, 

these rules are evaluated using the introduced indexes. 

The index used are confidence, rule support, lift, chi-

square test. These values are only defined in the 

particular sub-dataset. Meaning the rule’s support in the 

original dataset is much lower than in the corresponding 

subdatasets. Minimum confidence (mconf) and minimum 

rule support (mrs) are set to filter out useful rules. Also, 

as stated earlier pmax value is set, and the rules with p 

higher than pmax are removed since the relationship 

between the antecedents and the consequent has not been 

proved. The rules may have high values for support, 

confidence, and lift but a low value of p because of the 

balancing process. It should be noted that 2 value is 

calculated over the main imbalanced dataset for every 

rule. 
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 Table 2: Discretisation procedure used to extract rules 

Continues value 
Discretised 

value 
Label Condition 

NL NLD 

1 <0.373NL0 

2 <0.471NL0. 373 

3 <0.594NL0.471 

4 NL0.594 

WS (m/s) WSD 

1 <2WS 0 

2 <3WS 2 

3 11WS 3 

T (C) TD 

1 <12.6T2.2- 

2 <20T12.6 

3 <29.8T20 

4 39.8T29.8 

H (%) HD 

1 <17H 0 

2 <40H 17 

3 100H 40 

OM Season 

1 3OM1 

2 6OM4 

3 9OM7 

4 12OM10 

DM (days) DMD 

1 <14DM0 

2 <80DM14 

3 <240DM80 

4 DM240 

NM NMD 
1 NM =0 

2 NM>0 

LM (days) LMD 

1 <41LM0 

2 41<=LM<98 

3 <232LM98 

4 LM232 

OH Day quarter 

1 <6OH0 

2 <12OH6 

3 <18OH12 

4 <24OH18 

AL (MW) ALD 

1 AL<11.23 

2 <15.93AL 11.23 

3 <23.07AL 15.93 

4 38.55AL 21.06 

Substation Zone Zone 
Each substation is assigned to its 

zone 

3. Results 

In this section, we apply the proposed method to find 

interesting rules that describe the factors affecting certain 

outage causes occurrence. During the pre-processing part, 

it was revealed that the majority of outages happen 

because of malfunction or fault in a certain piece of 

equipment. There are a lot of pieces of equipment present 

in the power grid that may be responsible for the outage. 

Here, some causes are more frequent than others. Hence, 

it would be better to mine rules about them. These causes 

include fault in the cable, cable termination, jumper, 

overhead distribution line, transformers, and pin 

insulators used in overhead power lines. These rules can 

be used to either determine the outage cause before 

searching for it or identify the factors associated with 

different causes. 

As explained in the previous part, the rules in which 

the consequence is one of the above are of interest. Here 

we use indexes such as minimum support, minimum 

confidence, lift, maximum p to evaluate the rules. Given 

the notations defined in the methodology section we put 

mconf=70%, mrs=8%, pmax=0.025. 

The first cause is the cable. We found out that about 

40% of the faults that lead to an outage, happen in the 

third zone of the grid (Zone=3). The reason behind this is 

the concentration of underground cables in the area. 

Because of this fact, it is better to find rules that describe 

this zone’s cable-related outages. Tables 3 and 4 are the 

rules related to cable outages. In these two tables, we can 

see that apart from the zone’s involvement, other factors 

such as the season (summer), wind speed, and the 

distance between the last momentary outage and the 

present permanent outage are there. It is revealed that 

high temperature associated with summer increases the 

chance of a cable-related outage by decreasing the 

maximum current that the cable can transmit. For other 

causes, we simply look for those factors in the grid 

meaning they will not be separated by their zone. In 

Table 5 the rules to identify features affecting cable-

termination fault are presented. The important factors 

here are season (Autumn) and zones. Besides, we can 

observe that the feeders in which maintenance has been 

carried out between 4 to 7 months (LMD=3) before the 

outage are more likely to be shut down due to a cable-

termination fault. Table 6 shows the rule set for the 

outages that are caused by a jumper fault. By looking at 

this table, the average load, days from the last momentary 

outage can be named as the principal features. These 

rules demonstrate that a momentary outage is likely to 

lead to a jumper-related permanent 

outage. The wind factor can also affect jumper faults 

by moving them. For the overhead distribution line, the 

main factors are the load and the temperature according 

to Table 7.  
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Table 3: Cable-related outages rules in the grid 

Consequent Antecedents 
Support 

(%) 
Confidence (%) Lift 2 p 

Cable Zone = 3 and HD = 2 
8.557 

 
92.157 

 
1.772 73.03 

Almost 
zero 

Cable Zone = 3 and WSD = 1 
10.57 

 

90.476 

 
1.739 98.09 

Almost 

zero 

Cable 
Zone = 3 and DMD = 4 and 

NMD = 1 
17.785 89.623 1.723 215.58 

Almost 
zero 

Cable Zone = 3 and Season = 2 8.893 88.679 1.705 77.18 
Almost 

zero 

Cable DMD = 4 and WSD = 1 14.765 77.273 1.486 61.498 
Almost 

zero 

 

High values of load accompanied by high temperature 

may increase line sag and cause a line to line short 

circuit. In Table 8, we can see that transformer faults 

usually happen in springtime in this grid which might 

have something to do with the winding or transformer 

insulation structure. At last for pin insulators, as shown in 

Table 9, these types of faults are highly dependent upon 

high humidity and the distance between the permanent 

outage and the momentary one. It is known that humidity 

facilitates the fault occurrence by providing it with a path 

for short circuit current. Moreover, some momentary 

outages can cause partial discharge in the pin insulator 

and make the next fault a permanent one. 

 

 

Table 4: Cable-related outages rules in zone 3 

Consequent Antecedents Support (%) Confidence (%) Lift 2 p 

Cable Day quarter = 1 and WSD = 1 13.825 93.333 1.647 19.05 Almost zero 

Cable LMD = 2 and DMD = 4 13.825 90.0 1.588 15.739 Almost zero 

Cable TD = 3 and HD = 2 and DMD = 4 10.138 86.364 1.524 8.78 0.003 

 
Table 5: Cable termination-related outages rules 

Consequent Antecedents Support (%) Confidence (%) Lift 2 p 

Cable termination Season = 3 and TD = 1 and WSD = 1 9.16 86.111 1.659 35.38 Almost zero 

Cable termination Season = 3 and TD = 1 and NMD = 1 8.906 80.0 1.541 13.79 Almost zero 

Cable termination Zone = 6 and WSD = 1 and NMD = 1 8.397 78.788 1.518 31.98 Almost zero 

Cable termination Zone = 6 and ALD = 2 8.142 75.0 1.445 17.19 Almost zero 

Cable termination TD = 1 and LMD = 3 9.16 72.222 1.391 17.76 Almost zero 

Cable termination LMD = 3 and HD = 3 and NMD = 1 8.142 71.875 1.385 12.5 Almost zero 

 
Table 6: Jumper-related outages rules 

Consequent Antecedents Support (%) Confidence (%) Lift 2 p 

Jumper DMD = 1 and HD = 2 and NMD = 2 10.233 81.818 1.557 14.76 Almost zero 

Jumper NLD = 3 and WSD = 3 9.767 80.952 1.54 8.53 0.004 

Jumper ALD = 2 and NMD = 2 9.302 80.0 1.522 6.33 0.012 

Jumper DMD = 1 and ALD = 3 8.372 77.778 1.48 12.26 Almost zero 

Jumper Day quarter = 4 and NLD = 3 10.233 77.273 1.47 11.64 0.001 

Jumper Zone = 7 and DMD = 1 9.767 71.429 1.359 8.81 0.003 

 
Table 7: Overhead distribution line-related outages rules 

Consequent Antecedents Support (%) Confidence (%) Lift 2 p 

Overhead distribution line 
ALD = 4 and TD = 4 and 

Day quarter = 3 
9.551 88.235 1.707 13.51 Almost zero 

Overhead distribution line LMD = 1 and TD = 4 8.989 87.5 1.693 10.56 0.001 

Overhead distribution line NLD = 4 and WSD = 2 8.427 86.667 1.677 5.02 0.025 

Overhead distribution line Zone = 1 and TD = 4 8.989 81.25 1.572 16.65 Almost zero 

Overhead distribution line 
TD = 4 and Season = 1 and 

Day quarter = 3 
8.989 81.25 1.572 21.17 0.001 

Overhead distribution line 
DMD = 3 and TD = 4 and 

NMD = 1 
8.427 80.0 1.548 12.09 0.001 
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Table 8: Transformer-related outages rules 

Consequent Antecedents Support (%) Confidence (%) Lift 2 p 

Transformer Season = 1 and Day quarter = 3 and NMD = 1 8.537 85.714 1.654 6.88 0.009 

Transformer Day quarter = 4 and LMD = 1 9.146 80.0 1.544 13.17 Almost zero 

Transformer Season = 1 and Day quarter = 3 and WSD = 3 9.146 80.0 1.544 6.88 0.009 

Transformer Season = 1 and HD = 1 and Day quarter = 3 8.537 78.571 1.516 5.66 0.017 

 
Table 9: Pin insulator-related outages rules 

Consequent Antecedents Support (%) Confidence (%) Lift 2 p 

Pin insulator HD = 3 and WSD = 3 and NMD = 2 9.346 90.0 1.965 30.54 Almost zero 

Pin insulator NLD = 2 and DMD = 1 8.411 88.889 1.941 10.76 0.001 

Pin insulator WSD = 1 and DMD = 1 10.28 81.818 1.787 10.59 0.001 

Pin insulator TD = 1 and DMD = 1 9.346 80.0 1.747 10.22 0.001 

Pin insulator TD = 2 and HD = 3 and WSD = 3 9.346 80.0 1.747 16.01 Almost zero 

Pin insulator LMD = 1 and DMD = 1 13.084 78.571 1.716 17.01 Almost zero 

 

4. Conclusion and Future Works 

A real outage dataset combined with other real-world 

datasets was used to improve outage cause diagnosis in 

the smart grid era. To do this, three datasets were 

processed to gather important features. Each of the 

outages was labeled by the faulty piece of equipment to 

reflect the outage cause. Using the obtained dataset, an 

Apriori algorithm was utilized to find rules that describe 

the set of factors that lead to certain causes. To do so, for 

each cause, we labeled the dataset in a way that the 

records are either the main class or the others. Indexes 

such as rule support, confidence, and chi-square were 

used to find the most important rules. Distribution 

system’s operators can make use of these rules to 

instantly estimate the outage cause before looking for the 

fault cause. In this way, the repair time will be 

significantly reduced. The rules can also be employed to 

conduct PM by looking at the factors responsible for 

certain causes happening. 

As future work, other association rule mining 

algorithms can be used to find more precise rules. 

Besides, using the dataset which can be collected from 

advanced meter infrastructure can lead to more features 

and more precise rules to diagnose outages. Identifying 

the real reason behind a momentary outage occurrence 

(the cause) can be a great research ground to prevent the 

momentary outage from turning into the long permanent 

ones. 
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