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Abstract 

This paper designs an Optimized Adaptive Combined Hierarchical Sliding Mode Controller (OACHSMC) for a time-

varying crane model in presence of uncertainties. Uncertainties have always been one of the most important challenges 

in designing control systems, which include unknown parameters or un-modeled dynamics in systems. Sliding mode 

controller (SMC) is able to compensate the system in the presence of uncertainties due to un-modeled dynamics and is 

used for robust stability and performance behavior in the presence of additive un-modeled dynamics of system and 

multiplicative friction forces. This under-actuated crane has two sub-systems: trolley and payload. Therefore, it can be 

controlled by a single input signal with combined hierarchical sliding mode controller (CHSMC) using a two-layer-

sliding manifold accurately. Payload mass and cable length are time-variant variables through load transferring. Due to 

the Time-varying models and the inefficiency of most controllers, the use of an adaptive controller can help improve 

system performance. This controller is adapted by considering a time-varying coefficient of the second layer sliding 

manifold. For energy saving of the input signal, the parameter of the first layer sliding manifold of ACHSMC is 

optimized by two intelligent strategies: genetic algorithm (GA) and particle swarm optimization (PSO) method. The 

simulation results show robust stability and performance of the proposed optimized controller. 

Keywords: Time-varying crane model, Uncertainty modelling, Adaptive Control, Combined Hierarchical Sliding 

Mode Control, Genetic algorithm, Particle Swarm Optimization. 
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1. Introduction 
In recent decades, a plenty of efforts have been made to 

control the under-actuated nonlinear systems such as 

crane system [1], inertia-wheel pendulum [2-4] and so 

on. [5]. Also, fuzzy method has been applied to control 

under-actuated systems both in theoretical analysis and 

in practical application reviewed in [6]. Efforts [7, 8] 

made to design the fuzzy controllers for nonlinear 

overhead crane systems with input delay, actuator 

saturation, and dead-zone compensation and a Fuzzy-

tuned PID anti-swing controller have been studied in 

[9]. 

One of the robust designs is SMC that includes 

switching manifold [10-13]. In [14], an overhead crane 

system affected by external perturbations has been 

controlled by a second-order sliding mode (SOSM) 

controller. Two control approaches of SMC with 

nonlinear sliding manifold and vibration strain rate 

feedback (SRF) have been used for flexible spacecraft 

attitude control in [15], and the helicopter pitch angle 

control problem has been simulated using an integral 

augmented sliding mode controller in [16]. 

The SMC is insensitive to variety of system 

uncertainties, disturbances, unknown inputs, and 

perturbations. This feature actually provides capability 

more than controller resistance and ensures asymptotic 

stability of the system by the Lyapunov theorem. The 

Fractional-Order SMC has been designed for nonlinear 

systems with uncertainty in [17-19]. The research [20] 

has controlled an isolated bridge with columns of 

irregular heights through a separated multilevel sliding 

mode controller (SMSMC) of three corresponding 

control signals. However, a hierarchical SMC (HSMC) 

can be designed by a single control signal to describe 

the degree of the significance of each system state 

variable and the reasons why it is suitable for under-

actuated system [21, 22]. Also, an incremental HSMC 

approach has been proposed in [23]. To improve crane 

control performance, [24, 25] have used sliding 

manifold with time-varying parameters. Design of 

adaptive SMC is a good choice for time-varying 

models. In [26], an adaptive model reference with 

HSMC has been developed for a class of uncertain 

under-actuated systems with time delay and dead-zone 

inputs. Qian and Zou have presented an adaptive HSMC 

for the class of under-actuated systems in [27, 28]. 

The crane systems are often operated under 

uncertainty conditions such as un-modeled dynamics, 

forces, and disturbances. In this paper, the friction force 

is modelled as multiplicative uncertainty. Hence, SMC 

is designed as a robust controller in presence of 

uncertainties and disturbances. This system is under-

actuated with two subsystems: trolley and payload. 

Hence, it is preferable to use combined HSMC with 

two-sliding manifold layers. In the first layer, the sliding 

manifold is defined for two subsystems. The crane 

model parameters are time variants such as payload 

mass and cable length, so adaptive control is used to 

adjust the behavior of the system to the desired value. In 

this way, the performance of the system is improved. 

For this reason, an ACHSMC is proposed for this 

system. Finally, the first layer sliding manifold 

parameter is calculated by GA and PSO methods to save 

energy of the single input of the system for each 

payload transferring of the crane. 

 This paper is organized as follows: The friction 

forces of the crane are modelled as multiplicative 

uncertainties with input signals of system in Section 2. 

In Section 3, the combined HSMC is defined by 

intermediate variables. The proposed ACHSMC is 

designed in Section 4, and its stability is approved and 

optimized by GA and PSO.  Simulation results are 

presented and discussed in Section 5. Finally, some 

concluding remarks are given in Section 6. 

 

2. Uncertainty Modeling and Problem 

Formulation 
Fig. 1 shows the coordinate system of a single-

pendulum-type crane model with its payload. 

Apparently, the crane system consists of two 

subsystems: trolley and payload. The payload is 

suspended from the trolley by a cable, and the system is 

forced by an actuating input signal which is defined in 

(1): 

(1) 𝑢 = 𝑢𝑎𝑐𝑡 − 𝑢𝑓𝑟𝑖𝑐 

𝐿′  

𝐿′  

𝑢𝑎𝑐𝑡  
𝑢𝑓𝑟𝑖𝑐  

𝜃 

M 

𝑚′  

 

 

 
Fig. 1: The crane model with time variant load 

Other symbols in Fig. 1 are described as the trolley 

mass M, the swing angle of the payload with respect to 

the vertical line θ, the trolley position 𝑥 respect to the 

origin. 𝑚′(𝑡) and 𝐿′(𝑡) are time-varying payload  mass 

and cable length. It is assumed that the frictional force 

of the system is described in (2): 
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(2) 𝑢𝑓𝑟𝑖𝑐 = (∆𝑏𝑖)𝑢,        𝑖 = 1, 2 

where the control gain ∆𝑏𝑖 has the certain bounds, but it 

is unknown; it models similar to multiplicative 

uncertainty with input signal [11]. These boundaries are 

as 0 < ∆𝑏𝑖min
≤ ∆𝑏𝑖 ≤ ∆𝑏𝑖max

 and geometric means of 

them is defined in (3), and original input coefficients are 

in (4). 

(3) ∆𝑏𝑖 = (∆𝑏𝑖min
∆𝑏𝑖 max

)
1

2,    𝑖 = 1, 2 

 

 

(4) 

 

𝑏̂1 = 𝑏̂1(𝑋) =
1

𝑀 + 𝑚′ sin2 𝑥3

 

𝑏̂2 = 𝑏̂2(𝑋) =
cos 𝑥3

(𝑀 + 𝑚′ sin2 𝑥3)𝐿′
 

 

 

 

(5) 

 

𝑥̇1 = 𝑥2 

𝑥̇2 = 𝑓1(𝑋) + 𝑏1(𝑋)(𝑢 + 𝑢𝑓𝑟𝑖𝑐)

= 𝑓1(𝑋) + 𝑏1(𝑋)(1 + ∆𝑏1)𝑢 

𝑥̇3 = 𝑥4 

𝑥̇4 = 𝑓2(𝑋) + 𝑏2(𝑋)(𝑢 + 𝑢𝑓𝑟𝑖𝑐)

= 𝑓2(𝑋) + 𝑏2(𝑋)(1 + ∆𝑏2)𝑢 

 

The dynamic model of the crane in the state space 

domain is considered in (5) from [21]. Here, 𝑥1 = 𝑥, 

𝑥3 = 𝜃, 𝑥2 are the trolley velocity; 𝑥4 is the angular 

velocity of the payload. The dynamics 𝑓𝑖 have 

uncertainty and are not known precisely. Thus, 𝐹𝑖is 

additive uncertainty bound and defined as (6). Also, 𝑓𝑖 is 

original model of system as (7): 

(6)  |𝑓𝑖 − 𝑓𝑖| ≤ 𝐹𝑖 ,      𝑖 = 1, 2 

   

𝑓1(𝑋) =
𝑀𝐿′𝑥4

2 sin 𝑥3 + 𝑚′𝑔 sin 𝑥3 cos 𝑥3

𝑀 + 𝑚′ sin2 𝑥3

 

𝑓2(𝑋)

= −
(𝑀 + 𝑚′)𝑔 sin 𝑥3 + 𝑀𝐿′𝑥4

2 sin 𝑥3 cos 𝑥4

(𝑀 + 𝑚′ sin2 𝑥3)𝐿′
 

 

(7) 

 

 

3. Combined Hierarchical Sliding 

Manifold Description 
The presented crane model in [29] has four state 

variables as specified in (5). They can be divided into 

two groups. One group is composed of original 𝑥1 and 

𝑥3 , and in the other group 𝑥2 and 𝑥4 are their 

derivatives, and 𝑒1 and 𝑒3 are matching errors in (8). 

(8) 𝑒1 = 𝑥1 − 𝑥1𝑑 , 𝑒3 = 𝑥3 − 𝑥3𝑑 

𝑥1𝑑 is desired trolley position, and 𝑥3𝑑 is desired 

payload swing angle. In the first layer, we define an 

intermediate variable 𝑧 by them as sliding manifold in 

(9) 𝑐 is a positive constant. 

(9) 𝑧 = 𝑒1 + 𝑐𝑒3 

In the second layer, 𝑠 is constructed by the 

intermediate variables and its derivative, which is 

determined by (10).  

(10) 𝑠 = 𝛼(𝑡)𝑧 + 𝑧̇ 

Since 𝑚′(𝑡) and 𝐿′(𝑡) are time-varying payload 

mass and cable length, 𝛼(𝑡) is an assumed time-varying 

parameter and it can be positive or negative. Thus, 

sliding manifold 𝑠 could be in any quadrant in its phase 

plane. The schematic of the two-layer-combined-sliding 

manifold is illustrated in Fig. 2. 𝑒2 and 𝑒4 are errors of 

trolley and angular velocities. 

𝑧 𝑧̇ 

𝑒1 𝑒3 

𝑒2 

s 

𝑒2 𝑒4 

 

  2th layer 

 

  1th layer   

 

 

Intermediate variable   
𝑧 = 𝑒1 + 𝑐𝑒3  

 

 

     Derivatives        

𝑧̇ = 𝑒2 + 𝑐𝑒4 

Combined sliding manifold       

 𝑠 = 𝛼(𝑡)𝑧 + 𝑧̇ 

 

 

 
Fig. 2: Combined hierarchical sliding manifold 

 

4. Stability Analysis and Design of 

ACHSMC System 
For the stability of the system, a Lyapunov function 

candidate can be defined in (11).  

𝑉 = 0.5 𝑠2 (11) 

By using derivation of (9) and (10) and substituting 

(10), the derivative of Lyapunov's functions with respect 

to time 𝑉̇ is described in (12). 

(12) 𝑉̇ = 𝑠𝑠̇ = 𝑠(𝛼̇𝑧 + 𝛼𝑧̇ + 𝑧̈)
= 𝑠(𝛼̇𝑧 + 𝛼𝑒2 + 𝛼𝑐𝑒4 + 𝑐𝑓2

+ 𝑓1 + (𝑏1(1 + ∆𝑏1)
+ 𝑐𝑏2(1 + ∆𝑏2))(𝑢𝑠𝑤)) 

Now, by considering 𝑏𝑖0(𝑋) = 𝑏𝑖(𝑋)(1 + ∆𝑏𝑖)and 

𝑏̂𝑖0(𝑋) = 𝑏𝑖(𝑋)(1 + ∆𝑏̂𝑖) for 𝑖 = 1,2, the switching 

control law is obtained as (13). 

(13) 
𝑢𝑠𝑤 = −

𝑘 𝑠𝑔𝑛(𝑠)

𝑏̂10 + 𝑐𝑏̂20

 

The adaptive parameter 𝛼̇ is derived in Eq. (14) by an 

assumption 𝑠̇ = 0.  

(14) 𝛼̇ = −(‖𝑧‖2 + 𝛿)−1(𝑓1 + 𝑐𝑓2 + 𝛼𝑒2 + 𝛼𝑐𝑒4z 

where δ is a small positive constant.  

Equation (12) can be expressed as (15) by substituting 

(13) and (14).  

(15) 𝑉̇ = 𝑠(𝑏10 + 𝑐𝑏20) × 
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((𝑏̂10 + 𝑐𝑏̂20)
−1

(−𝑘𝑠𝑔𝑛(𝑠))) 

Thus, considering the range of k as (16), 𝑉̇ is negative 

definite, and asymptotic stability of this system is 

approved. 

(16) 𝑘 ≥ (𝑏̂10 + 𝑐𝑏̂20)(𝑏10 + 𝑐𝑏20)−1(𝐹1 + 𝑐𝐹2) 

 

5. Classical SMC Method 
In this section, in order to create a comparative view, 

the classical sliding mode method is presented. The 

invariance property of sliding mode stands for the clear 

and significant difference between this controller and 

the proposed one. The classical SMC algorithm is not 

adaptive, and the sliding surface and control law are 

designed as (17) and (18) respectively. 

(17) 
𝑠 = ∑ 𝑐𝑖𝑒𝑖

𝑛

𝑖=1

 

(18) 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑠𝑤 

which 𝑢𝑒𝑞  is equivalent control law. To obtain the 

equivalent control law 𝑢𝑒𝑞 , the derivative 𝑠 is taken 

with respect to time 𝑡 and the system model is 

substituted in it. Then, the law 𝑢𝑒𝑞  can be deduced from 

𝑠̇ = 0 as (19). 

(19) 
𝑢𝑒𝑞 = −

∑ 𝑐2𝑖𝑓𝑖
𝑛
𝑖=1 + ∑ 𝑐2𝑖−1𝑒2𝑖

𝑛
𝑖=1

∑ 𝑐2𝑖𝑏𝑖0(𝑋)𝑛
𝑖=1

 

The stability of this method is proved by selecting 

Lyapunov function candidate (11). By substituting the 

control law (18) and the equivalent control law (19) in 

the derivative 𝑉,𝑉̇  is achieved as (20). 

(20) 
𝑉̇ = 𝑠 (∑ 𝑐2𝑖−1𝑒2𝑖

𝑛

𝑖=1

+ ∑ 𝑐2𝑖𝑓𝑖

𝑛

𝑖=1

+ ∑ 𝑐2𝑖𝑏𝑖0(𝑋)

𝑛

𝑖=1

(𝑢𝑠𝑤 + 𝑢𝑒𝑞)) 

For the purpose of system stability, the switching law 

𝑢𝑠𝑤 is defined like the ACHSMC method as in (13). 

6. Energy Optimization 
In this section, evolutionary algorithms GA and PSO are 

used to optimize the energy of the input control signal 

by specifying the constant variable 𝑐. In using the 

evolutionary algorithm to solve optimization problems, 

the first important task is to determine how the solution 

can be represented according to the elements or 

terminology of the specific evolutionary algorithm. The 

processes for initialization and generation of new 

population may produce infeasible solutions. It is very 

important to choose a solution representation that is 

more likely to produce feasible solutions. In addition to 

the solution representation, two common parameters 

that must be determined initially are the population size 

and the maximum number of iteration. 

a. GA 

The main idea of GA is to imitate natural selection and 

the survival of the fittest. In GA, solutions are ranked 

based on fitness values. The parents are selected based 

on probabilities that favor individuals with better 

fitness. Flow chart of genetic algorithm is shown in Fig. 

3. The population size is 8 chromosomes. The 

crossover, mutation percentages, and the selection 

pressure are relatively equal to 0.8, 0.3 and 10. The GA 

selection method can be chosen as roulette wheel or 

random selection in MATLAB software. 

𝑌𝑒𝑠 

𝑁𝑜 

 

 

 

 

 

                                                 

 

 

 

  Generate new population       

Selection              

Crossover             

Mutation 

Generate initial population 

 

 
Evaluate individual fitness 

Rank individual fitness 

 

 

Start 

Time to stop 

 
Fig. 3: Flowchart ofgenetic algorithm 

b. PSO 

In PSO, a solution is represented as a particle, and the 

population of solutions is called a swarm of particles. 

Each particle has two main properties: position and 

velocity. Each particle moves to a new position using a 

type of velocity. Once a new position is reached, the best 

position of each particle and the best position of the 

swarm are updated as needed. The velocity of each 

particle is then adjusted based on the experiences of the 

particle. The process is repeated until a stopping criterion 

is met. Flowchart of PSO is shown in Fig. 4. Initial 

velocity of particles is considered equal to zero. The 

velocity and position of each particle in the next iteration 

for fitness function evaluation are calculated as follows 

[30]: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (21) 
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𝑣𝑖(𝑡 + 1) = 𝑤[𝑣𝑖(𝑡) 

             +Ф1𝑟𝑎𝑛𝑑1(𝑃𝑖(𝑡) − 𝑥𝑖(𝑡))
+ Ф2𝑟𝑎𝑛𝑑2(𝑔(𝑡) − 𝑥𝑖(𝑡))] 

(22) 

Ф = Ф1 + Ф1  .  𝑤 =2/(2 − Ф − √Ф2 − 4Ф) 
(23) 

The constants Ф1 and Ф2 are cognitive and social 

parameters respectively, and 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑1 are 

random values in [0, 1]. The factor Ф has an effect on 

the convergence characteristic of the system and must 

be greater than 4.0 to guarantee stability. However, as 

the value of Ф increases, the constriction 𝑤 decreases 

producing the diversification which leads to slower 

response. The typical value of Ф is 4.1 (i.e. Ф1 = Ф2 =

2.05) as proposed in [31]. 

7. Simulation Results 
The parameters of the crane model and the initial and 

destination state vectors are given in Table 1. 

Table 1: Physical parameters of the crane 

Value 
Parameters and 

Vectors 

1 
Trolley mass M 

(kg) 

0.8 
Payload mass m 

(kg) 

0.305 Cable length L (m) 

9.81 
Acceleration of 

gravity g (
𝑚

𝑠2
) 

[0𝑚    0
𝑚

𝑠
    0 𝑟𝑎𝑑      0

𝑟𝑎𝑑

𝑠
] 

Initial state vector 

𝑥0 

[1𝑚    0
𝑚

𝑠
    0 𝑟𝑎𝑑      0

𝑟𝑎𝑑

𝑠
] 

Destination state 

vector 𝑥𝑑 

𝐹1 = 𝐹2 = 2.5 
additive 

uncertainties 

∆𝑏1 = ∆𝑏2 = 0.1 
Multiplicative 

uncertainties 

𝑌𝑒𝑠 

𝑁𝑜 

 

 

 

 

 

                                                 

 

 

 

  Generate new population       

Update velocity         

update position 

Generate initial population 

 

 
Evaluate individual fitness 

Update personal best    

Update global best 

 

 

Start 

Time to stop 

 

Fig. 4: Flow chart of Particle Swarm Optimization 

In the classical SMC simulation, the coefficients 𝑐𝑖 

are considered equal to -3, -3, 5 and 1 in (17). Figs 5-8 

show the simulation results of the proposed OACHSMC 

method compared to the classical SMC method. 

 
Fig. 5: Crane trolley positions 

 
Fig. 6. Swing angle of the payload 

 
Fig. 7: Control signals 

 
Fig. 8: Sliding manifolds 
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As can be seen, the convergence of the trolley 

position and of the payload swing angle is faster by 

using the proposed method. The designed OACHSMC 

is tested under different scenarios for time-varying 

payload mass and cable length during load transferring 

of Table 2.  

Table 2: Six different scenarios for load transferring 
Scenario Time-varying 

Parameters 

Algorithm MaxIt. N 

Pop. 

Cost 

Function 

(a) 
𝑚′

= 𝑚 +
2𝑀

𝑇
𝑡 

PSO 12 8 311.8913 

 𝐿′ = 𝐿 = 𝑐𝑜𝑛𝑠𝑡 GA 12 8 311.8913 

(b) 
𝑚′ = 𝑚
= 𝑐𝑜𝑛𝑠𝑡 

PSO 15 10 326.1994 

 𝐿′ = 𝐿(2 −
1

𝑇
𝑡) GA 15 10 326.1994 

(c) 
𝑚′

= 𝑚 −
0.7𝑀

𝑇
𝑡 

PSO 25 15 291.5821 

 𝐿′ = 𝐿 = 𝑐𝑜𝑛𝑠𝑡 GA 25 15 291.5821 

(d) 
𝑚′

= 𝑚 +
2𝑀

𝑇
𝑡 

PSO 18 12 315.9582 

 𝐿′ = 𝐿(1 +
1

𝑇
𝑡) GA 18 12 315.9582 

(e) 
𝑚′

= 𝑚 +
2𝑀

𝑇
𝑡 

PSO 20 10 350.3157 

 𝐿′ = 𝐿(2 −
1

𝑇
𝑡) GA 20 10 350.3157 

(f) 
𝑚′

= 𝑚 −
0.7𝑀

𝑇
𝑡 

PSO 20 15 317.7588 

 𝐿′ = 𝐿(2 −
1

𝑇
𝑡) GA 20 15 317.7588 

 

The time-varying parameter 𝛼(𝑡)of the ACHSMC is 

seen in Fig. 9. Two evolutionary algorithms GA and 

PSO have derived the optimized value 𝑐 = 0.02for 

different scenarios. 

 

 
Fig. 9: Time-varying parameters𝜶(𝒕) 

 
Fig. 10: Crane trolley positions 

 
Fig. 11: Swing angle of the payload 

 
Fig. 12: Control signals 

 
Fig. 13: Sliding manifolds 

 

By optimization methods, the coefficient of trolley 

position error is selected very greater than payload angle 

error coefficient in (9); thus, in Figs. 10 and 11, the 

crane trolley reaches its destination point about 3 

seconds, and payload angle deviation is damped at least 

in 5 seconds. Fig. 12 and 13 show the adaptive optimal 

input control signal 𝑢 and hierarchical sliding manifold 

for six scenarios. 

 

8. Conclusion 
In this paper, an optimized robust controller was 

designed for under-actuated time-varying crane model 

in presence of uncertainties. The model has two 

subsystems with different state space variables: trolley 

position, payload cable angle, and their derivatives. 

Hence, we defined two sliding surfaces for an accurate 

control. In the first layer, a sliding surface was defined 

for original state variables and another for derivatives 

variables. Then, they were combined by a sliding 

manifold in the second layer as a hierarchical sliding 

mode controller. For load transferring, mass and cable 

length time variant was considered, and the adaptive 

controller was designed. For this purpose, coefficient of 

the second sliding manifold layer of CHSMC was 

adapted by time-variant variables. The stability of this 
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controller was proven by Lyapunov theorem. Finally, to 

save energy of the input signal, the parameter of the first 

sliding manifold layer of HSMC was optimized by 

genetic and PSO algorithms. The proper performance 

and convergence of the proposed method were 

confirmed by comparing this method with the classical 

SMC method. Six different scenarios for time-varying 

payload mass and cable length during load transfer for 

crane system were simulated by MATLAB software. 

The results confirmed that the OACHSMC method has 

suitable behaviors such as optimal signal control, 

smooth sliding manifold, and adaptive robust stability 

and performance. 
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